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CHAPTER 1 - INTRODUCTION  

1.1 – Background and Significance 

Much effort has been put forth over the past many years to improve motor vehicle 

child safety such as improved child restraint systems, enhanced vehicle safety designs 

and implementations, child safety awareness programs, and legislation.  Despite these 

efforts, in the United States during the year 2012, an average of 3 occupants, ages 14 

and younger, were killed and 462 injured every day in all motor vehicle crashes (National 

Highway Traffic Safety Administration [NHTSA], 2014A). This equates to 1,095 deaths 

and 168,630 child injuries in motor vehicle crashes per year. As of 2013, the leading 

cause of death for children ages 1 to 14 was unintentional injury accidents (CDC, 2015).  

Just over 4,000 child fatalities for ages 1-4 and just over 5,300 child fatalities for ages 5-

14 were reported by the CDC in 2013 for all causes of death.  Motor vehicle crashes 

(MVCs) were the cause of 425 of the 4,000 fatalities for children ages 1-4 and 910 of the 

5,300 fatalities for children ages 5-14 (10.0 percent and 17.0 percent, respectively) 

(CDC, 2015).   

A study published by the National Center for Statistics and Analysis (NCSA) in 

2002 analyzed fatality and injuries to children under the age of 8 involved in a motor 

vehicle traffic crash based on various impact characteristics, including impact direction 

(Starnes, 2002).   Data was analyzed from the National Automotive Sampling System 

(NASS), General Estimating System (GES), Fatality Analysis Reporting System (FARS) 

and the NASS Crashworthiness Data System (CDS) databases for years 1991 through 

2000. Fatality rates were determined using the U.S. Census Bureau’s population data 

and the Federal Highway Administration’s (FHWA) vehicle miles traveled (VMT) data 
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(Starnes, 2002). FARS data specific to lateral impact was broken down into age groups 

(Age<1, Ages 1-3, Ages 4-8), seating position with regard to impact point (near-side, 

middle, far-side), and restraint use (Child Safety Seat, Lap and/or Shoulder Belt, None 

Used, Other/Unknown). For the Age<1 age group seated in the second row, 56% of side 

impact fatalities were on the near side, 25% were in the middle seat, and 19% were on 

the far side of the vehicle.  Among the child occupants less than 1-year-old seated in the 

second row, 65% of side impact fatalities were children seated in a child safety seat and 

25% were unrestrained. For the 1 through 3-year-old age group seated in the second row, 

56% of side impact fatalities were on the near side, 22% were in the middle seat, and 

22% were on the far side of the vehicle.  Among the child occupants, ages 1 through 3, 

seated in the second row, 61% of fatalities were near side impacts with children seated 

in a child safety seat or lap and/or shoulder belt and 21% were restrained child far side 

impact fatalities.  Unrestrained 1 through 3-year-old occupants in the second row involved 

in a side impact accounted for 27% of fatalities in the near side seat, 43% of fatalities in 

the middle seat, and 33% of fatalities in the far side seat. For the 4 through 8-year-old 

age group seated in the second row, 60% of side impact fatalities were on the near side, 

18% were in the middle seat, and 22% were on the far side of the vehicle.  Among the 

child occupants ages 4 through 8 seated in the second row, 68% of fatalities were near 

side impacts with children seated in a child safety seat or lap and/or shoulder belt and 

20% were restrained child far side impact fatalities.  63% of unrestrained 4 through 8-

year-old child fatalities in a second row side impact were located in the middle seat 

position (Starnes, 2002).  Based on this study, it was concluded that the number of side 

impact fatalities involving children seated on the struck side (near side) was 2.6 times 
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greater than the number of side impact fatalities for children seated on the opposite side 

(far side) of the vehicle.  In addition, it was determined that the frequency of near side 

impact fatalities was consistent over all age groups studied (Starnes, 2002). 

A study published by NHTSA in 2010 analyzed incapacitating injury rates of 

children under the age of 8 involved in a motor vehicle traffic crash utilizing the NASS and 

GES databases for years 1998 through 2008, as well as the National Trauma Data Bank-

National Sample Project (NTDB-NSP) for years 2003 through 2007 (Hanna, 2010). 

According to this study, approximately 27.0 % of child passengers, age 0 to 7, were 

involved in lateral impact motor vehicle crashes. Of all impact directions and age groups 

analyzed, lateral impact had the highest rate of incapacitating injuries for children age 4 

to 7 (Hanna, 2010). When considering NASS-GES data, estimated incident rates of 

incapacitating injuries for children in vehicles impacted in any direction, the incident rate 

for unrestrained children in a laterally impacted motor vehicle was found to be 21% versus 

children who were lap and shoulder belted (4.5%), or children restrained in a safety seat 

(3.3%) (Hanna, 2010). 

High injury and fatality rates have prompted research in child side impact 

protection.  Sherwood et al. (2003) performed an in-depth analysis of 92 child vehicle 

collision fatalities obtained from the FARS database and the police departments that 

investigated these collisions.  Of these 92 fatalities, 37 were from a side impact collision, 

17 of the 37 fatalities were determined to be unsurvivable, and 14 were considered 

potentially survivable.  Of these 14 potentially survivable side impact collisions, all were 

near side impacts with intrusion occurring at the child’s seating position, and six of these 

cases, which had known injury data, documented head trauma as the fatality mechanism.     
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 Orechowski et al. (2003) analyzed data, from 1991 to 2002, for restrained children 

ages 0 to 14 who were admitted to a Level I pediatric trauma center due to crash injuries 

through the National Highway Traffic Safety Administration (NHTSA) sponsored Crash 

Injury Research and Engineering Network (CIREN).  Side impact crash data was 

compared to frontal impact crash data as well as to the NASS database.  Case vehicles 

with a Principal Direction of Force (PDOF) of 45 to 135 degrees (1:30 to 4:30 as 

designated on a clock with 12:00 being straight forward on the vehicle) or 225 to 315 

degrees (7:30 to 10:30) were designated as side impacts.   It was concluded that 

compared to frontal collisions, side impact crashes produced 2.5 times greater risk of an 

AIS 2+ head injury, 3.7 times greater risk of AIS 2+ cervical spine injury, and 4.0 times 

greater risk of AIS 2+ thoracic injury to children 0 to 14 years of age.  Children in frontal 

impacts were found to be at greater risk of AIS 2+ abdominal and lumbar spine injuries 

than in side impact collisions.  

Howard et al. (2004) studied the injury mechanism of children in side impact 

collisions.  This study focused, first, on the investigation of trauma-based collisions 

(collisions where occupants ended up in trauma center) and, second, on seating position 

and injury using the National Highway Traffic Safety Administration’s Fatality Analysis 

Reporting System (FARS) and the National Automotive Sampling System 

Crashworthiness Data System (NASS-CDS) databases.  The trauma-based collisions 

included 0 to 12-year-olds in a motor vehicle collision with a lateral PDOF plus or minus 

45 degrees.  Seating positions were grouped as near-side, far-side, or center.  The FARS 

database files included years 1995 to 2000.  Through their trauma-based collision study, 

it was determined that near-side child occupants were the most severely injured, with 
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principal injuries occurring at the head, brain, and neck, typically accompanied by 

thoracic, abdominal, pelvic girdle, and limb injuries. The analyses illustrated that children 

restrained on the near side of the impact were significantly more likely to be severely 

injured or killed than those seated in the center seat. The primary mechanism of injury 

was determined to be contact with the vehicle interior which could occur with or without 

significant intrusion. 

 Viano and Paranteau (2008) analyzed field accident data for 0 to 7 year old 

restrained and unrestrained occupants of a vehicle’s second row in the FARS and NASS-

CDS databases covering years 1991 to 2005 for fatality risk based on seating position 

and PDOF. PDOF designations were defined by the following impact types as frontal 

impacts (impact location GAD1=”F” and no rollover, rollover < 0), side impacts (impact 

location GAD1=”L” or “R” and no rollover, rollover < 0), and rear impacts (impact location 

GAD1=”B” and no rollover, rollover < 0).  Injury severity was defined using the Maximum 

Abbreviated Injury Scale (MAIS). MAIS ranges from MAIS 0 to 9 and denotes assessment 

of life-threatening injuries at the time of first medical evaluation, but not resulting long-

term injuries, and is designated as MAIS = 0 for an uninjured occupant, MAIS = 1-2 for 

minor to moderate injury, MAIS = 3-6 for serious to unsurvivable injuries, and MAIS = 7-

9 for missing or unknown injuries. An accident was also considered fatal if the occupant 

died from injuries within three days of the accident.  The variable “TREATMNT=1” was 

used to identify fatality and was incorporated with the serious to unsurvivable MAIS 3-6 

coding as MAIS3+F.  Risk of serious to fatal injury was determined by taking the ratio of 

the MAIS3+F to MAIS0+F data.  It was determined that 30.9% of serious to fatal child 

second row injuries (MAIS 3+F) were caused by side impact. Location of the occupant 
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relative to collision forces and intrusion were found to play a role in increased injury risk.   

Recent research has focused on the relative effectiveness of restraints for children 

seated in belt-positioning booster seats compared to those using seatbelts only with 

respect to injury risk reduction in side impacts. Arbogast et al. (2005) studied data from 

the Partners for Child Passenger Safety (PCPS) program from 1998 through 2004. 

Qualifying data included vehicle model years 1990 or newer, involved in a crash with at 

least one child occupant < 15 years of age, regardless of restraint use, and rear row child 

occupants weighing 30 to 80 pounds.  Direction of first impact was defined through a 

series of questions by telephone survey of the vehicle’s insured person regarding vehicle 

parts involved in the first collision. Lateral impact crashes were defined by vehicle parts 

involved in the first collision located along the vehicle’s lateral plane.  Crash severity was 

defined through telephone survey by driver reported intrusion into the occupant 

compartment. Injury severity was defined through survey question response, classified 

by body region and Abbreviated Injury Scale (AIS-1990) severity score.  All injuries with 

an AIS score of 2 or greater defined “injuries” for the study.  Based on the reviewed data, 

relative risk of injury in side impact was analyzed for children ages 4 to 8, restrained in a 

belt-positioning booster seat compared to those restrained by seatbelts. Based on this 

study, a 58% risk reduction of injury was observed for children ages 4 to 8 restrained by 

a seatbelt in a belt-positioning booster seat compared to those in seat belts only. The 

largest injury reduction benefit was found at the head and face as well as a pattern of 

injuries to the abdomen and spine known as seat belt syndrome (SBS).   

Arbogast et al. (2009), used the same PCPS data source as utilized in their 2005 

study, but they extended their analysis based on a more comprehensive dataset which 
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included years 2005 to 2007.  The analysis looked at unadjusted and adjusted relative 

risk of injury for child occupants by seating row.  Linear regression modelling was 

performed to determine the unadjusted and adjusted relative risk.  Adjusted data included 

child restraint use (CRS, seatbelt, unrestrained), age of driver (<25 years and 25+years), 

vehicle model year, and initial direction of impact (frontal, right side, left side, rear, and 

other/unknown). Analyses were performed using the whole study sample year range as 

well as grouped by model year 1998 to 2002 versus 2003 to 2007.  Based on the study 

results, it was determined that children seated in booster seats in a side impact fared 

better than when restrained by seat belts only, with injury reduction observed in 68% of 

near side impacts and 82% of far side impacts.   

In 2011, NHTSA published their Biomechanics Research Plan for 2011 to 2015.  

NHTSA’s plan included research in the advancement of both front and side impact child 

dummies (NHTSA, 2011). Most recently, in January of 2014, NHTSA proposed an 

upgrade to the Federal Motor Vehicle Safety Standard for child restraint systems (FMVSS 

213).  This proposed upgrade included a side impact test utilizing a Q3s child dummy for 

assessing car seats sold in the United States, designed for children weighing up to 40 

pounds.  The goal of the proposed upgrade to FMVSS 213 was to work toward making 

sure child passengers are protected in side impacts (NHTSA, 2014B). 

Research has shown assessment and development of child side impact dummies 

is necessary. Customarily, adult ATDs have been validated using Post Mortem Human 

Subject (PMHS) data.  Due to the paucity of pediatric PMHS tests, biofidelity targets for 

children have been scaled down from adult response data (Irwin and Mertz 1997). One 

issue that has been raised regarding scaling from adult data to a child is that children are 
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not just small adults.  From a biomechanical perspective, there are not only changes with 

regard to growth in body proportions and skeletal structure but also with tissue and bone 

properties (Franklyn, 2007; Wenger and Pring, 2005). For instance, the cortex of young 

bones tends to be more porous, flexible, and less likely to fracture than adult bones 

(Wenger and Pring, 2005).  These research findings and others like them indicate the 

need for further child safety research, particularly in lateral impacts, and the assessment 

and development of more advanced child side impact dummies (anthropometric test 

devices (ATDs)).  

1.2 – A Brief Review of Anthropometric Test Devices (ATDs)    

Occupant safety and injury risk during motor vehicle collisions (MVC) are 

evaluated using anthropomorphic test devices (ATDs).  ATDs are intended to represent 

the geometrical size and biofidelic response of a human being during a MVC event. The 

ATDs are used in government regulated and experimental MVC testing that can be as 

severe as real world MVCs, necessitating that ATDs be robust and durable enough to 

withstand many demanding impact tests while still being able to produce repeatable 

responses. The most frequently used family of ATDs in the United States, particularly for 

frontal impact testing, is the Hybrid III.  The Hybrid III family includes the 50th percentile 

midsize male, the 95th percentile large male, the 5th percentile female, as well as a series 

of child ATDs. The Hybrid III child ATDs, which were developed in the 1990s, include the 

3-year-old, 6-year-old, and 10-year-old.   

Another family of child dummies, the Q-series child dummies, were developed in 

Europe in the late 1990s in order to meet the demands of European government 

regulated MVC testing, taking into account the deceleration profile of modern day 
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vehicles.  The Q-series family of child dummies include the new-born (Q0), the 12-month 

(Q1), the 18-month (Q1.5),  three-year-old (Q3), and six-year-old (Q6) dummies 

(EEVC, 2014). There are currently three 6-year-old ATDs: the HIII and the more current 

Q6, both of which are designed primarily for frontal impact testing, and the Q6s, which is 

a prototype side impact dummy.   

1.3 – A Brief Overview of 6-Year-Old Pediatric ATD Design      

The Hybrid III 6-year-old ATD was designed in 1993.  Representative dimensions 

of the HIII 6-year-old ATD were based on information available at the time for size and 

weight of children in the United States, and interpolated, as necessary, to estimate these 

data to the desired age (Irwin and Mertz, 1997).   Table 1.3.1 contains characteristic 

anthropometric measurement comparisons of the 50th percentile mid-sized adult human 

male and 6-year-old human child based on data provided in Irwin and Mertz (1997) and 

used for scaling purposes. Total body mass for the HIII 6-year-old ATD was also obtained 

from the anthropometric studies.  In addition, body mass segments for the HIII 6-year-old 

ATD were defined based on a Masterbody Form cast of the 6-year-old child (Irwin and 

Mertz, 1997). Table 1.3.2 contains body segment mass comparisons of the HIII 50th 

percentile mid-sized adult male ATD and HIII 6-year-old ATD used for scaling purposes.  

The elastic bending moduli of bone for the 6-year-old and adult were acquired from 

published research on the parietal bone (Irwin and Mertz, 1997).  Table 1.3.3 contains 

elastic bending moduli of bone comparisons for the 50th percentile mid-sized adult male 

and 6-year-old child used to establish scaling techniques. 
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Table 1.3.1 Irwin and Mertz (1997) Characteristic Dimensions Comparison 

Dimension Description 6-Year-Old 50th Percentile Mid-sized Male 

Standing Height (mm) 1168 1751 

Erect Sitting Height (mm) 635 907 

Shoulder Breadth (mm) 290 465 

Shoulder to Elbow (mm) 234 366 

Chest Depth (mm) 143 229 

Chest Breadth (mm) 194 311 

Waist Breadth (mm) 168 314 

Hip Breadth (seated) (mm) 230 368 

 

Table 1.3.2 Irwin and Mertz (1997) HIII ATD Body Segment Masses  

Body Segment HIII 6-Year-Old HIII 50th Percentile Mid-sized Male 

Torso (kg) 10.76 40.23 

Upper Extremities (kg) 1.98 8.53 

Lower Extremities (kg) 4.28 23.36 

Total Body Mass (kg) 20.91 78.20 

   

 

Table 1.3.3 Irwin and Mertz (1997) Elastic Bending Moduli of Bone for Children and 
Adults 

Dimension Description 6-Year-Old 50th Percentile Mid-sized Male 

Elastic Modulus (GPa) 6.6 9.9 
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 The biofidelity requirements of the HIII 6-year-old ATD, in both front and side 

impact, were obtained by scaling the biomechanical response corridors of the HIII 50th 

percentile mid-sized adult male ATD using size and material properties (Irwin and Mertz, 

1997; Irwin et al., 2002). 

The Q6 ATD was designed in 1999.  The anthropometry of the Q6 ATD is based 

on child anthropometric measurements from a database entitled the CANDAT (Child 

Anthropometric DATabase) which combined child anthropometry data from the United 

States, Europe, and Japan (EEVC, 2014). Table 1.2.4 contains characteristic 

anthropometric measurements for the Q6 ATD. Table 1.2.5 contains body segment 

masses for the Q6 ATD (Q6 User Manual 2012). Elastic bending modulus of bone used 

to develop the HIII 6-year-old ATD was also used in the development of the Q6 ATD. 

Measurements and body mass segments for the Q6s ATD are similar to the Q6 ATD.   

Table 1.3.4 Q6 User Manual (2012) Characteristic Dimensions 

Dimension Description Q6/Q6s 

Standing Height (mm) 1143 

Sitting Height – with head 

tilted forward (mm) 

 

601 

Shoulder Breadth (mm) 305 

Shoulder to Elbow (mm) -- 

Chest Depth (mm) 141 

Chest Breadth (mm) -- 

Waist Breadth (mm) -- 

Hip Breadth (mm) 223 
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Table 1.3.5 (Q6 User Manual 2012) Q6 ATD Body Segment Masses 

Body Segment Q6/Q6s 

Torso (kg) 9.07 

Upper Extremities (kg) 2.49 

Lower Extremities (kg) 6.90 

Total Body Mass (kg) 22.90 

 

Images of the three 6-year-old ATDs are provided in Figure 1.3.1, below. 

            

Figure 1.3.1 6-Year-Old ATDs 

Research and development of the 6-year-old side impact ATD (Q6s) has stalled 

over the past several years.  According to NHTSA’s Biomechanics Research Plan 2011 

to2015, any assessment of the Q6s, which is currently a prototype, would follow the lead 

of the Q3s ATD, currently in production. Regarding changes to hardware, design, and 

potential development of the Q6s, it is several years behind the Q3s (NHTSA, 2011).   In 

HIII Q6 Q6S
SS 
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January of 2014, NHTSA proposed an amendment to the Federal Motor Vehicle Safety 

Standard (FMVSS) No. 213, “Child restraint systems”.  In this proposed amendment, it 

documents that there is currently no side impact dummy representative of children larger 

than the Q3s that can reasonably test CRSs to the dynamic side impact requirements 

proposed in the amended FMVSS 213 standard (NHTSA  2014B). 

Scarceness of pediatric postmortem human subjects (pediatric PMHS) has yielded 

very limited information regarding pediatric biomechanical behavior and injury level 

assessments for child ATD development.  Lack of pediatric PMHS biomechanical 

research has necessitated researchers to generate biofidelity requirements and injury 

assessment reference values (IARVs) for pediatric ATDs based on geometric and 

material property scaling of 50th percentile adult male PMHS data. Scaling from adult to 

child assumes, however, geometric and material property similarities between the two, 

which requires validation data that is lacking due to the deficiency of pediatric PMHS 

resources.  Lack of proper validation raises some doubt among researchers regarding 

scaling law validity. For instance, Franklyn (2007) postulates that mature adult skeletal 

bones and pediatric skeletal bones differ greatly in geometry as well as physical properties, 

and thus a child is not just a scaled down adult. 

1.4 – A Brief Overview of the Anatomical and Physiological Differences between 

Human, Adults, and Children 

Geometric differences in body proportions and skeletal structure of immature 

children compared to mature adults are greatest during a child’s infancy stage and 

decrease as the child develops into an adult. As a child grows to maturity, there is a 

continual increase in height and weight, although not at a constant rate. Along with 
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change in stature is a gradual increase in seated height, body widths, and body 

circumferences (Franklyn, 2007; Frick, 2005). At age 6, body proportions are about 20% 

head and neck, 35% torso, and 45% lower extremities, whereas, a midsized adult male’s 

body proportions are more like 13% head and neck, 40% torso, and 47% lower 

extremities, as shown in Figure 1.4.1 below (Frick, 2005).  

 

Figure 1.4.1 Body Proportion Change with Growth (Frick, 2005) 

From a biomechanical perspective, there are not only changes with growth in body 

proportions and skeletal structure but with tissue and bone properties (Franklyn, 2007; 

Wenger and Pring, 2005). For instance, the cortex of young bones tends to be more 

porous, flexible, and less likely to fracture than adult bones (Wenger and Pring, 2005).   

The human shoulder (pectoral girdle) consists of an anterior clavicle and a posterior 

scapula that articulate at the acromioclavicular joint.  The medial end of the clavicle 

articulates with the manubrium, and the scapula articulates with the proximal end of the 

humerus at the glenohumeral joint, as illustrated in Figure 1.4.2, below (Scheuer and 

Black, 2004).   
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Figure 1.4.2 Bones of the Shoulder (Pectoral Girdle) (Scheuer and Black, 2004) 

The only joint between the shoulder and the axial skeleton is located at the medial end of 

the clavicle, at the manubrium.  The clavicle serves as a strut to brace and support the 

upper limb to the thorax, whereas the scapula serves as a site of maximum mobility, being 

held in place by muscles and ligaments only.  The primary function of the shoulder is to 

increase upper limb movement (Scheuer and Black, 2004).  The clavicle is a long bone, 

derived from a shaft, or primary center of ossification, and medial and lateral articular 

surfaces which develop from secondary ossification centers. The clavicle’s primary 

ossification center appears sometime between weeks 5 and 6 of fetal development with 

fusion occurring at roughly week 7.  By week 11 of fetal development, the clavicle takes 

on its adult “S” shape.  Ossification begins in the epiphyseal cartilage of the medial clavicle 

end at roughly 13-14 years of age, and fusion to the diaphysis does not occur until typically 

10 years after initial formation.  Although literature varies somewhat as to whether a lateral 

epiphysis is generated, if and when it is, it tends to be a temporary structure that forms 

around ages 19 to 20 with fusion occurring months after formation (Scheuer and Black, 
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2004). Fetal clavicle growth occurs at a relatively linear rate until term where it reaches a 

length of approximately 40-41 mm (Scheuer and Black, 2004).  Rate of clavicle growth has 

been shown to be similar between genders from birth to approximately age 12, growing at 

an average of 8.4 mm per year.  After age 12, clavicle growth rate tends to be lower for 

females compared to males. By age 18, the average clavicle length for females is 

approximately 149.2 mm + 12.3 mm and 161.3 + 10.8 mm for males (McGraw et al., 2009). 

The primary ossification center of the scapula appears during approximately weeks 7 and 

8 of fetal growth.  Although the main body of the scapula has taken on its adult morphology 

by prenatal growth weeks 12 to 14, most of it’s at least 7 secondary ossification centers 

appear and fuse sometime after age 8, with exception to the coracoid.  The coracoid 

begins ossification around 1 year of age and is recognized as a separate ossification 

center at approximately age 3 (Scheuer and Black, 2004). 

The human thoracic region spans from the base of the neck, superiorly, to the 

diaphragm, inferiorly.  It consists of the rib cage and its underlying organs.  The rib cage is 

composed of 12 pairs of ribs in combination with the sternum anteriorly and the vertebrae of the 

spinal column posteriorly.  Ribs 1 through 7 (superior ribs) directly attach, in combination 

with cartilaginous attachment, to the sternum. Ribs 8 through 10 (central or false ribs) 

attach to the sternum through a much longer, stronger cartilaginous attachment.  Ribs 

11 and 12 (inferior or floating ribs) have no anterior connection. Intercostal muscles are 

located between the ribs and assist in respiration. The lungs are located within the rib 

cage with the left lung consisting of two lobes and the right lung consisting of three lobes. 

The mediastinum, located in the central chest region, encloses the heart and its 

associated vessels, the thymus, esophagus, and trachea.  The diaphragm separates the 
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thoracic and abdominal cavities.  Primary ossification centers are present for all sternebra 

except the xiphoid process age 1.  Sternebra begin to ossify and fuse by age 4, with 

epiphysis appearing and beginning to fuse by age 11.  All rib ossification centers are 

present by birth with the appearance of epiphyses and subsequent fusion of the 

epiphyses occurring at approximately age 12. During childhood, the rib cage gradually 

ossifies from cartilage, causing the ribs to become more rigid. At approximate ages 2 and 

3, a corresponding change in the shape of the chest occurs wherein the pediatric chest 

becomes more oblique (Scheuer and Black, 2004). The anterior of the ribs become more 

inferior, creating a downward sloping of the ribs from posterior to anterior. These 

structural aspects of the thorax are not accounted for in current child ATD designs which 

have resulted from fixed scaling techniques down from the midsize male ATD.   

The abdominal cavity ranges from the diaphragm to the pelvic basin and includes 

the internal organs within this region.  The abdominal cavity organs consist of both solid 

organs and hollow organs.  The major solid organs are fluid-filled vessels and include 

the liver, spleen, and kidneys.  The major hollow organs include the small and large 

intestines, stomach, and bladder.  

The human pelvic region (pelvic girdle) consists of two hip bones comprised of 

three main bones: the ilium, the ischium, and the pubis which come together to form the 

acetabulum. The two hip bones are attached at the pubic symphysis anteriorly and at the 

sacrum posteriorly, as illustrated in Figure 1.4.3 (Moore and Agur, 2007), below. 
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Figure 1.4.3 Bones of the Pelvis (Pelvic Girdle) (Moore and Agur, 2007) 

These bones are loosely connected by cartilaginous tissue and fuse at different pediatric 

growth stages.  Starting between ages 5 and 8, fusion of the ischiopubic rami occurs.  At 

roughly age 11 to 15 in females and 14 to 17 in males, the triradiate cartilage of the 

acetabulum fuses.  Additional growth and fusion of the pelvic girdle continues into early 

adulthood (Scheuer and Black, 2004; Yoganandan et al., 2015).   
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The sacroiliac joint, the bilateral joint connecting the sacrum and the illiums, is 

comprised of fibrocartilage on the iliac surface and hyaline cartilage on the sacral surface 

during all stages of embryonic development (Scheuer and Black, 2004). The epiphysis of 

the sacroiliac joint develops from several isolated ossification locations that eventually 

combine to form a thin sheet of bone which covers the articular surface.  The epiphysis 

appears generally around age 15 to 16 and fuses by age 18 or older (Scheuer and Black, 

2004). 

Because the pediatric pelvis is more cartilaginous in nature compared to the adult 

pelvis, it allows for more energy absorption during impact and results in less bony 

fractures.  Pelvic fractures tend to be extremely rare in children under 7 to 8 years of age, 

whereas isolated pubic rami fractures tend to occur in children ages 8 to 14. Multiple 

pelvic bone fractures, similar to those found in adults, tend to be visible in post-pubescent 

adolescents (Yoganandan et al., 2015).  

1.5 – A Brief Overview of Human Subject Research Related to Structural 

Response Data of the Pediatric Shoulder, Thorax, Abdomen, and Pelvis Regions 

As of this date, the author is unaware of any pediatric PMHS shoulder testing. However, 

whole thoracic region impact testing of pediatric PMHS was performed by Ouyang et al. 

(2006). Two age groups were used in the research study, a younger group consisting of 

four subjects aged 2 to 4 years and an older group of five subjects aged 5 to 12 years. 

Testing was performed with a pneumatic impactor device actuated by a predetermined air 

pressure and predetermined velocity of just below 6.7 m/s. The pediatric PMHS used in 

this particular thoracic impact testing were previously used that same day in another 

series of abdominal impact tests, resulting in some potential compromise of the thoracic 
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test results. Two different impactors were used in order to accommodate for the 

difference in stature of the two groups. The younger PMHS group subjects were impacted 

with a 50 mm diameter, 2.5 kg mass impactor, and the older PMHS group subjects were 

impacted with a 75 mm diameter, 3.5 kg impactor. Neither of the impactors used in the 

Ouyang et al. (2006) study corresponded with impactors used for ATD thorax frontal 

impact biofidelity corridor testing, which uses a 92 mm diameter, 1.2 kg pendulum for the 

3-year-old response corridor testing, a 102 mm diameter 2.9 kg pendulum for the 6-year-

old response corridor testing, and a 121 mm 6.89 kg pendulum for the 10-year-old 

response corridor testing.  Testing was performed in the anterior-posterior (AP) plane 

with the impactor striking the anterior thorax of the pediatric PMHS. Testing was 

performed without arterial pressurization and with the lungs collapsed. Test subjects were 

suspended in the seated position on a sheet of Teflon with their arms extended forward. 

The head was positioned upright using a cervical collar and tape. Test subjects were 

instrumented with a sternal accelerometer, a tri-axial accelerometer secured to the fourth 

thoracic vertebrae (T4), an accelerometer attached to the third lumbar vertebrae (L3), and 

a contour chest band. The impactor was backed with a load cell and data was adjusted 

for impactor mass. Each test subject was impacted only once in order to easily identify 

hard or soft tissue injuries (Ouyang et al. 2006).  A significant difference was reported in 

average peak impact force for the old and young groups, and chest deformation results 

were found to correlate well with injury for the younger group versus the older group. In 

addition, pediatric PMHS sternal impact stiffness values were determined to be 60-75 

N/mm (Ouyang et al. 2006). 

Whole abdomen pediatric PMHS testing has been performed by Kallieris et al. 
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(1976) and Kent et al. (2009). Kallieris et al. (1976) performed abdominal region dynamic 

load testing of 4 unembalmed pediatric PMHS ages 2 to 11 years.  The pediatric PMHS 

were seated in a standard Volkswagen front seat, which was secured to the Heidelberg 

deceleration sled, and restrained by a lap belt around a semi-cylindrically shaped safety 

table (abdominal impact shield), which maintained the abdominal region during impact.  

Tests were conducted at impact velocities of 30 kph and 40 kph.  A trapezoidal 

deceleration pulse shape was utilized for the testing resulting in 18 to 23 g’s of 

deceleration. Testing resulted in muscular hemorrhages and intervertebral disk and 

ligament hemorrhages, but no internal organ injuries. Kent et al. (2009) tested the 

abdominal region of a seven-year-old PMHS utilizing a 50-mm-wide polyethylene fiber-

reinforced composite belt.  A table-top test rig with a hydraulic master-slave cylinder 

arrangement linking a high-speed material testing machine was utilized for the test runs.  

The belt was attached directly to the slave cylinder pistons by steel cables that passed 

through channels cut in the center of the hardware supporting the specimen. Plywood 

sheets were also present to adjust the specimen’s height on the table in order to attain 

appropriate belt angles off its shoulder and pelvis. Both upper and lower abdominal region 

testing was performed in an anterior-posterior (AP) load direction.  For the upper 

abdominal test series, the belt was positioned 70 mm superior to the umbilicus while for 

the lower abdominal test series, the belt was centered over the umbilicus.  For the lower 

abdomen test, a quasi-static (20 mm/s) rise up to a 46-mm displacement of the piston 

was performed.  Following the quasi-static test, a dynamic ramp-and-hold test to the same 

peak displacement was performed using a peak abdominal displacement rate of 

approximately 1.6 m/s and held for 60 seconds.  During the hold time, force relaxation 
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was measured to observe transient behavior of the abdomen.  A similar test was executed 

for the upper abdomen but to 38-mm peak displacement. Maximum abdominal 

penetration ranged from 33 to 39 mm with corresponding peak posterior reaction forces 

ranging from 1,655 N during the quasi-static testing to 5,352 N at the end of the dynamic 

loading, and peak penetration rates of 2.2 to 2.3 m/s during the ramp-hold testing. 

Ouyang et al. (2003), performed lateral impact testing with a flat free-mass 

pneumatic impact device to the greater trochanter and iliac wing of 12 pediatric PMHS, 

ages 2 to 12. Test subjects were placed in a seated position on a test table with the right 

side of the pelvis facing the flat impacting plate surface, which weighed 3.24 kg, measured 

180 mm in height by 140 mm in width, and was backed by a load cell.  Test subjects were 

positioned such that the buttocks were in full contact with the test table, their left pelvis 

was firmly positioned against a support fixture, and the torso and head were attached via 

tape to a support boom.  Subjects’ legs were aligned freely at a right angle to the direction 

of impact.  Impact speeds ranged from 7.0 to 9.1 m/s.  Impactor mass compensated force 

versus pelvic deflection were reported.  The Ouyang et al. (2003) study provides the only 

lateral impact experimental testing of the human pediatric pelvis, to this author’s 

knowledge, to date. No reported pelvic injuries were found in any of the pediatric test 

subjects even though pelvic compression levels recorded were over 50%.  In contrast, 

adult pelvic response in similar tests generated a 25% risk of injury at approximately 30% 

compression.  

1.6 – Statement of the Problem and Specific Aims 

There is a clear need for the biofidelic assessment of the 6-year-old ATDs in lateral 

impact in order to further develop the design and biofidelity of these ATDs for future child 
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safety research and child occupant protection in side impacts.  Of the known pediatric 

PMHS research relative to structural response data for the shoulder, thorax, abdomen, 

and pelvis, as described previously, the only body region to have been tested in the lateral 

direction was the pelvis by Ouyang et al. (2003).  Due to the scarcity of pediatric PMHS 

impact testing, specifically in the lateral direction, alternative means of obtaining relevant 

data for pediatric models, need to be considered.  Other options include scaling from adult 

data and the use of animal models.  

The main objective of this dissertation is to systematically assess the current 

mechanical behavior and biofidelity of the 6-year-old ATDs in lateral impact, evaluate the 

geometric and material properties of appropriately age and torso proportioned porcine 

surrogates, and verify current scaling laws in order to generate biofidelity requirements 

and injury assessment reference values (IARVs) through research and testing of 

appropriately age-torso-proportioned surrogates. 

 Specific Aim 1: Perform a literature review on the epidemiology of injury patterns 

of 4 to10-year-old children in lateral and oblique vehicle collisions.  Also, perform a field 

data analysis of injury patterns and sources in lateral impact crashes. This specific aim 

investigates the main injury patterns and i n j u r y  sources for children in rear seat 

lateral impact using the National Automotive Sampling System-Crashworthiness Data 

System (NASS-CDS) and Crash Injury Research Engineering Network (CIREN) 

databases.  The criteria for the review would include occupant age, occupant seating 

location, impact force direction, restraint use,   injury location (by body region), injury level, 

and injury source.   

Specific Aim 2: Assess the design and biofidelity of the current 6-year-old HIII 
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(with Ford in-house abdominal insert), Q6, and Q6s prototype anthropometric test 

dummies (ATD) in lateral impact loading.  The biofidelity performance in lateral impact for 

the three ATDs will be assessed against the scaled biofidelity targets published in Irwin 

et al. (2002), the abdominal biofidelity target suggested in van Ratingen et al. (1997), and 

the biofidelity targets published in Rhule et al. (2013).  Regional and overall biofidelity 

rankings for each of the three ATDs will be performed using both the ISO 9790 Biofidelity 

Rating System (ISO/TR 9790, 1999) and the National Highway Traffic Safety 

Administration’s (NHTSA) External Biofidelity Ranking System (BRS) (Rhule et al., 2013).  

This specific aim is to understand the existing mechanical behavior of the current 6-year-

old ATDs in lateral impact and determine the body regions of the 6-year-old ATDs 

requiring further research and development.    The complete assessment will include:  

Shoulder:  (1) ISO pendulum test, (1) ISO WSU rigid sled test  

Thorax: (1) ISO pendulum test, (2) ISO drop tests, (1) ISO WSU rigid sled test 

Abdomen: (2) ISO drop tests, (1) van Ratingen pendulum test, (1) ISO WSU rigid 

sled test 

Pelvis: (2) ISO drop tests, (1) ISO pendulum test, (1) ISO WSU rigid sled test 

Specific Aim 3: Lateral pendulum impact testing of appropriate age and size 

cadaveric porcine surrogates (to be determined based on necropsy and regression 

analysis developed in Kent et al. (2006)) of 3-year-old, 6-year-old, 10-year-old, and 50th 

percentile male equivalent thorax and abdomen regions will be performed and data will 

be compared to scaled human response corridors.   Due to the paucity of pediatric PMHS, 

cadaveric pigs will be used for this portion of the testing and analysis.  Shoulder and pelvis 

testing will be deleted from the test matrix due to the dissimilarity between the swine and 
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human shoulder and pelvis. Sub-aims include the following: 

1. Test the porcine surrogate equivalents (PSE) (3 tests per condition) based 

on the same scaled lateral impact assessment test methodology used in 

ISOTR9790 and van Rantingen for the thorax and abdomen as used for the 

biofidelity assessment of the 6-year-old ATDs.  

2.  Measure and quantify erect sitting height, upper torso mass, lower torso 

mass, and whole body mass for the determined 3-year-old, 6-year-old, 10-

year-old, and 50th adult male PSE in order to establish the same test 

normalization scaling parameters as performed in Mertz (1984) and Irwin et 

al. (2002) for the porcine thorax and abdomen.  

3. Assess and compare the impact response of the porcine surrogate torso 

and abdomen data results to the established ISO TR9790 age specific 

human scaled lateral impact response corridors and van Ratingen scaled 

corridors for the thorax and abdomen body regions.  

Specific Aim 4:  Perform analysis and testing to generate rib segment elastic 

bending modulus for the determined 3-year-old, 6-year-old, 10-year-old, and 50th adult 

male PSE in order to establish the same test scaling parameters as performed in Mertz 

(1984) and Irwin et al. (2002) for the porcine thorax and abdomen.  

Specific Aim 5:  Develop test response ratios for force, deflection, acceleration, 

and time for the 3-year-old, 6-year-old, 10-year-old, and 50th adult male PSE from lateral 

pendulum impact of the thorax and abdomen. The response ratios developed for the PSE 

will then be compared to the already established human response ratios. Using the 

determined porcine response ratios, 50th adult male PSE response corridors for lateral 
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pendulum impact of the thorax and abdomen will be scaled to the 10-year-old, 6-year-old, 

and 3-year-old PSE. PSE impact response test data will be compared to the response 

corridors scaled from the 50th male PSE to assess scaling laws and determine if any 

correlation exists.  
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CHAPTER 2 - EPIDEMIOLOGY OF INJURY PATTERNS FOR 4 TO 10-YEAR-OLDS IN 
LATERAL AND OBLIQUE IMPACTS: A SURVEY OF THE NASS-CDS DATABASE 
FROM 1991 TO 2014 AND CIREN DATABASE FROM 1996 TO 2014 (SPECIFIC AIM 
1) 

2.1 – Background 

 Epidemiology is the study of the distribution and determinants of health-related 

states or events in specified populations (Last, 2001). With regard to the pediatric 

population involved in vehicle collision side impacts, epidemiologic data can be used to 

identify specific injury producing conditions and offer possible safety technology 

effectiveness through population-based estimates.  

Much of the past epidemiologic work regarding child injury in lateral and oblique 

vehicle impacts has focused on quantifying the relative risk of child occupants among 

seating positions in side impact crashes. A study published by the National Center for 

Statistics and Analysis (NCSA) in 2002 analyzed fatality and injuries to children under the 

age of 8 involved in a motor vehicle traffic crash based on various impact characteristics, 

including impact direction (Starnes, 2002).   Based on this study, it was concluded that 

the number of side impact fatalities involving children seated on the struck side (near side) 

is 2.6 times greater than the number of side impact fatalities for children seated on the 

opposite side (far side) of the vehicle.  In addition, it was determined that the frequency 

of near side impact fatalities is consistent over all age groups studied (Age<1, Ages 1-3, 

Ages 4-8) (Starnes, 2002). 

A study published by NHTSA in 2010 analyzed incapacitating injury rates of 

children under the age of 8 involved in a motor vehicle traffic crash (Hanna, 2010). 

According to this study, approximately 27.0% of child passengers ages 0 to 7, involved in 

a motor vehicle crash, are involved in a lateral impact. Of all impact directions and age 
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groups analyzed, lateral impact has the highest rate of incapacitating injuries for children 

ages 4 to 7 (Hanna, 2010). The incidence rate for children unrestrained in a motor vehicle 

involved in a lateral impact was found to be 21% versus 4.5% of children who were lap 

and shoulder belted, or 3.3% of children restrained in a safety seat (Hanna, 2010). 

Howard et al. (2004) determined that child occupants in near-side impacts were 

the most severely injured, with principal injuries occurring at the head, brain, and neck, 

typically accompanied by thoracic, abdominal, pelvic girdle, and limb injuries. It was also 

determined that children restrained on the near side of the impact were significantly more 

likely to be severely injured or killed than those seated in the center seat. The primary 

mechanism of injury was determined to be contact with the vehicle interior which could 

occur with or without significant intrusion (Howard et al., 2004). 

 Viano and Paranteau (2008) attributed higher fatality rates to children located on 

the near side of right-sided impact crashes than the nearside of left-sided impact crashes 

for vehicles making a left turn across traffic.  The study determined these types of crashes 

likely result in side crashes of increased severity (Viano and Paranteau, 2008).   

 Epidemiologic research has also focused on the relative effectiveness of belt-

positioning booster seats compared to seatbelts with regard to injury risk reduction in side 

impacts. Arbogast et al. (2005) observed a 58% risk reduction of injury for children ages 

4 to 8 seated in a belt-positioning booster seat compared to those in seat belts. The 

largest injury reduction benefit was found at the head and face as well as a pattern of 

injuries to the abdomen and spine known as seat belt syndrome (SBS).  Arbogast et al. 

(2009), using the same but more comprehensive dataset, determined that children seated 

in booster seats in a side impact benefited most, with injury reduction experienced in 68% 
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of near side impacts and 82% in far side impacts.  No difference in side impact 

effectiveness was discovered in the study for belt-positioning booster restrained children 

seated in backless boosters versus high back boosters.  

 Epidemiological studies have analyzed mechanisms of injury for children seated 

in child restraints and seatbelts in side impact crashes.  For instance, Sherwood et al. 

(2003) analyzed 14 fatal side impact collisions of children restrained in child seats.  Six 

of the fourteen fatalities had sufficient injury data.  Of these six, head trauma was found 

to be the cause of the fatality.  In addition, for all the fatalities studied, intrusion was 

present at the child’s seat location. In the European-based CREST project, as presented 

in Lesire et al. (2001), cases in which 168 restrained children were involved in severe 

side impact crashes were analyzed. The head was found to be the body region most 

severely injured in 62% of the cases with cervical spine injuries being rare; however, when 

they were found to have occurred, they often led to fatality.  In addition, this study 

documented severe chest and abdomen injuries predominantly when the child was 

restrained in either a booster seat or using the seat belt.  Maltese et al. (2007) analyzed 

24 cases involving seatbelt restrained children ages 4 to 15 in side impact and 

documented that the majority of head and face impacts were with both the vehicle’s 

interior structures and the impacting vehicle.  In addition, these impact points were found 

to be horizontally within the rear half of the window opening and vertically from the center 

of the window down to the window sill. 

 Fractured pelvis injuries tend to be common in adults with respect to side impact 

crashes, but have been found to be more infrequent in the pediatric population due to 

cartilaginous connection of the pelvic bones and increased elasticity of the symphysis 
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pubis and sacroiliac joints (Arbogast et al., 2002; Silber and Flynn, 2002).  Arbogast et al. 

(2002) found that prepubescent children experienced isolated pubic rami fractures; 

however, post-pubescent children experienced more adult-like multiple fractures of the 

pelvic ring. Multiple fractures of the pelvic ring is an injury pattern directly associated with 

the ossification of the cartilage linkages of the three pelvic bones during puberty.  

2.2 – Methods 

 The objective of this specific aim is to perform a field data analysis using the 

National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) and 

Crash Injury Research Engineering Network (CIREN) field databases to investigate injury 

patterns to 4 to 10-year-olds in lateral and oblique impacts as well as analyze the main 

injury patterns and sources of injury to children in rear seat, lateral impacts based on the 

most current data.  

DATA – In this analysis, occupant injury data will be taken from the NASS-

CDS database, which is retained by the NCSA for crashes between years 1991 

and 2014. Commercially available software SAS (SAS Institute, Cary, NC) was 

used to retrieve the raw data and translate it into Excel (Microsoft, Redmond, WA) 

which was used for data analysis.  In addition, occupant injury data was taken from 

the CIREN database, which is also retained by the NCSA, for crashes between 

1996 and 2014.  Occupant injury data is not available from the CIREN database 

prior to 1996.  Results from this study could potentially be helpful in the design of 

pediatric ATDs, child restraints, or vehicles.  Results from this study might also be 

used to investigate lateral impact pediatric injury mechanisms. 

INJURY DEFINITION – Abbreviated Injury Scale (AIS) 2005 - Update 2008 
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(AAAM, Des Plaines, IL) was used to determine specific injuries and injury 

severities. Injury distributions were examined by body region as specified in the 

AIS dictionary (Head, Face, Neck, Thorax, Abdomen and Pelvis, Spine, Upper 

Extremity, Lower Extremity, and Other Trauma).  Injury distributions were 

examined by AIS severity coding and the Maximum AIS (MAIS) for multiply-injured 

patients based on the following AIS defined injury severity rankings: 

AIS CODE  DESCRIPTION 

 1   MINOR 

 2   MODERATE 

 3   SERIOUS 

 4   SEVERE 

 5   CRITICAL 

 6   MAXIMAL (CURRENTLY UNTREATABLE) 

 9   UNKNOWN 

CRITERIA – Children ages 4 to 10 were examined in this study.  All 

occupant seating locations were investigated. Seating positions were designated 

by row, and reported for the purposes of the study as either near side (seat location 

nearest the impacted side of the vehicle), middle, or far side (seat location opposite 

the impacted side of the vehicle). The study focused on side impacts with a 

Principal Direction of Force (PDOF) between 2:00 and 4:00 as well as between 

8:00 and 10:00, with 12:00 representing straight ahead on the vehicle. Child 

restraint use was also analyzed. Restraint use was documented only as restrained 

or unrestrained and not whether the restraint was being used properly.   Injury 
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distribution by injury severity (MAIS), MAIS by body region (head, face, neck, 

thorax, abdomen and pelvic contents, spine, upper extremity, lower extremity, and 

other trauma), and source of injury by age were documented.  There were many 

injury source descriptions provided in the NASS-CDS database.  In order to 

simplify the analysis of the data, the following eighteen key descriptors were used: 

seat, back support; vehicle interior; other noncontact; flying glass; child seat; 

roof/convertible top; pillar structure; belt restraint/buckle; window frame; glass; 

ground; air bag; other vehicle; other occupants; loose object; vehicle hardware; 

fire; and unknown. The NASS-CDS documented injury sources were designated 

to the most closely related descriptor possible.  

OTHER ISSUES FOR DATA ANALYSIS – Since the aim of this study is 

to identify the most common injury patterns and sources, only unweighted data 

was analyzed. Weighting factors were not used since they are based on the 

number of vehicles on the road and were therefore not suitable to evaluate 

individual injuries.  

According to the Federal Register, Federal Motor Vehicle Safety Standard 

214 was amended in 1990 in order to include a dynamic side impact test 

requirement to improve vehicle crashworthiness involved in vehicle-to-vehicle and 

vehicle-to-barrier side impact collisions.  This dynamic crash test focused on 

thoracic protection in side impact and was phased in for passenger cars beginning 

in 1993 and extended to Light Truck Vehicles (LTVs) with a Gross Vehicle Weight 

Rating (GVWR) of 2,722 kg (6,000 lb) or less manufactured on or after September 

1, 1998 (NHTSA (2004)). In 1995, Mercedes installed the first side impact air bags 
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into its E-class model vehicles (NHTSA (2004)), and by September of 1998, when 

the FMVSS 214 dynamic side impact crash test was phased in, side impact air 

bags were either standard or optional equipment on 16.9 percent of all passenger 

and LTVs (IIHS HLDI (2017)).  With new dynamic side impact regulations 

implemented by 1998, modification of side structures of vehicles would expect to 

change to accommodate the advancement of safety features in side impact.  An 

additional analysis regarding occupant injury severity and body region injured for 

model year vehicles prior to 1998 was performed separate from model years 1998 

to 2014.   

2.3 – Results 

A total of 2,039 child occupants, ages 4 through 10, were extracted from the NASS-

CDS database for all vehicle accident scenarios. In addition, a total of 98 child occupants, 

age 4 through 10, were extracted from the CIREN database for all vehicle accident 

scenarios. Based on the above-mentioned selection criteria, a total of 810 child occupants 

(39.7% of total) from the NASS-CDS data and 25 child occupants (25.5% of total) from 

the CIREN database, involved in side and oblique impacts, were extracted for the current 

study.   

NASS-CDS Database 

A fairly even age distribution was noted for the 810 occupants extracted from the 

NASS-CDS database who were involved in side and oblique impacts, as shown in Table 

2.3.1, below. 
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Table 2.3.1 Age Distribution of Child Occupants in Side Impacts Extracted from the 
NASS-CDS Database from 1991 through 2014 

 

Vehicle seat positions are typically designated by a numbering system as 

illustrated in Figure 2.3.1, below. As seen in Table 2.3.2, the majority, or 86.9% (701 of 

810) of the child occupants involved in a side impact, extracted from the NASS-CDS 

database, were documented as being seated in either the front row right position ( 194 

(24.0%) Seating Location 3), the second row left position (214 (26.4%) Seating Location 

4), the second row middle (91 (11.2%) Seating Location 5), or the second row right 

position (205 (25.3%) Seating Location 6).  Of the 194 child occupants documented as 

seated in seat location 3, 22 (11.3%) were 4-years-olds, 29 (14.9%) were 5-year-olds, 24 

(12.4%) were 6-year-olds, 35 (18.0%) were 7-year-olds, 22 (11.3%) were 8-year-olds, 28 

(14.4%) were 9-year-olds, and 34 (17.5%) were 10-year-olds. 

Of the 810 NASS-CDS occupants studied, only 72 (8.9%) were documented as 

using a child restraint system (CRS), 473 (57.3%) were documented as being restrained 

to some extent, 162 (19.6%) were documented as being unrestrained, and 103 (12.5%) 

were documented as unknown regarding restraint use.    
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Figure 2.3.2 Vehicle Seat Position Designation Diagram 

Table 2.3.2 Age Designated Seating Positions of Child Occupants in Side Impacts 
Extracted from the NASS-CDS Database from 1991 through 2014 

 

When broken down by side impact Principal Direction of Force (PDOF), 291 

(35.9%) of the 810 child occupants experienced impact forces from the 2 o’clock (2:00) 

direction, 127 (15.7%) experienced the impact from the 3 o’clock (3:00) direction, 17 

(2.1%) experienced impact from the 4 o’clock (4:00) direction, 8 (1.0%) experienced 
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impact from the 8 o’clock (8:00) direction, 108 (13.3%) experienced impact from the 9 

o’clock (9:00) direction, and 259 (32.0%) experienced impact from the 10 o’clock (10:00) 

direction.  This side impact force direction distribution for the 810 child occupants is 

illustrated in Figure 2.3.2 for reference below.  

Based on seat location relative to PDOF, 361 (44.6%) of the child occupants were 

documented as near side occupants to the location of impact, 312 (38.5%) were 

documented as far side occupants, 98 (12.1%) were documented as middle seat 

occupants, and 39 (4.8%) were documented as having an unknown seating location 

relative to impact. 

Maximum injury severity distribution, based on the AIS scale chart designated 

previously and regardless of vehicle model year for the 810 child occupants was 

documented with respect to side impact (Table 2.3.3). Of the 810 child occupants involved 

in side impact, 1 (0.1%) of the child occupants was documented as receiving Maximum 

AIS (or MAIS) 0 injuries, 585 (72.2%) were documented with MAIS 1 injuries, 103 (12.7%) 

were documented with MAIS 2 injuries, 66 (8.1%) were designated with MAIS 3 injuries, 

14 (1.7%) were documented with MAIS 4 injuries, 25 (3.1%) were documented with MAIS 

5 injuries, 9 (1.1%) were documented with MAIS 6 injuries, and 7 (0.9%) were 

documented with MAIS 9 injuries. 
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Figure 2.3.3 NASS-CDS Database Side Impact PDOF Distribution  

Table 2.3.3 MAIS Distribution for Child Occupants in Side Impacts Extracted from the 
NASS-CDS Database from 1991 through 2014 

 

Of the 810 child occupants, 555 (68.5%) were involved in side impact in vehicles 

manufactured prior to 1998, and 255 (31.5%) were involved in side impacts in vehicles 

manufactured from 1998 to 2014.  Of the child occupants involved in side impacts in pre-

1998 year manufactured vehicles, 392 (70. 6%) received MAIS 1 level injuries, 77 (13.8%) 

received MAIS 2 injuries, 52 (9.4%) received MAIS 3 injuries, 5 (0.9%) received MAIS 4 
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injuries, 18 (3.2%) received MAIS 5 injuries, 6 (1.1%) received MAIS 6 injuries, and 3 

(0.5%) received MAIS 9 injuries. More simply, 70.6% of child occupants involved in side 

impact in pre-1998 manufactured vehicles experienced MAIS 1 (minor) injuries and the 

remaining 29.4% experienced MAIS2+ (moderate or greater) injuries. 

Of the child occupants involved in side impacts in 1998 year manufactured vehicles 

or later, 1 (0.4%) received MAIS 0 injuries, 194 (76.0%) received MAIS 1 level injuries, 

25 (9.8%) received MAIS 2 injuries, 14 (5.5%) received MAIS 3 injuries, 7 (2.7%) received 

MAIS 4 injuries, 7 (2.7%) received MAIS 5 injuries, 3 (1.2%) received MAIS 6 injuries, 

and 2 (0.8%) received MAIS 9 injuries. More simply, 76.4% of child occupants involved 

in side impact in vehicles manufactured from 1998 to 2014 experienced either no or minor 

injuries and the remaining 23.6% experienced MAIS2+ (moderate or greater) injuries. 

Tables 2.3.4 and 2.3.5 illustrate MAIS injury by age and the vehicle manufacture 

year ranges described above, respectively.  Note that one 10-year-old child occupant 

riding in a vehicle manufactured from 1998 to 2014 received an MAIS 0 injury severity 

rating in addition to the data presented in Table 2.3.5, below. 

Table 2.3.4 Distribution of Child Occupants in Side Impacts by Age and MAIS for 
Vehicles Manufactured Before 1998 - NASS-CDS Database from 1991-2014 
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Table 2.3.5 Distribution of Child Occupants in Side Impacts by Age and MAIS for 
Vehicles Manufactured from 1998 to 2014 - NASS-CDS Database from 1991-2014 

  

The distribution of injury severity with respect to body region for the 810 child 

occupants is provided in Table 2.3.6, below.   

Table 2.3.6 Injured Body Region Distribution of Child Occupants in Side Impacts - 
NASS-CDS Database from 1991-2014 

 

The head (209 (25.4%)), followed closely by the face (196 (24.2%)), were 

documented as the most injured body regions for child occupants in side impact.  The 

lower extremities (106 (13.1%)) and upper extremities (90 (11.1%)) were the next most 

injured body regions.  The thorax (55 (6.8%)) and abdomen and pelvic contents (70 

(8.6%)) were also identified as frequently injured body regions with respect to child 

occupants in side impact.  Injury severity relative to body region was further evaluated by 

age as well as by vehicle manufacture year range for the 810 child occupants. Since 
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MAIS 4-6 and MAIS 9 constituted only 6.3% of the injury severities for all child occupants 

in side impact, these injury severity levels were combined for this portion of the study.  

Table 2.3.7 represents the injured body regions of the child occupants by age and MAIS 

in vehicles manufactured prior to 1998 involved in side impact, and Table 2.3.8 illustrates 

the injured body regions of the child occupants by age and MAIS in vehicles manufactured 

from 1998 to 2014 involved in side impact. 

Table 2.3.7 Injured Body Region Distribution by Age and MAIS of Child Occupants in 
Side Impacts involving Vehicles Manufactured Prior to 1998 - NASS-CDS Database 

from 1991-2014 
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Table 2.3.8 Injured Body Region Distribution by Age and MAIS of Child Occupants in 
Side Impacts involving Vehicles Manufactured From 1998 to 2014 - NASS-CDS 

Database from 1991-2014 

 

 

 



www.manaraa.com

43 
 

 
 

 

 

 

Source of injury was documented with respect to side impact for the 810 child 

occupants. The three primary sources of injury documented for all 810 child occupants 

involved in side impact were the vehicle’s interior (205 (25.3%)), the seat, back support 

(130 (16.0%)), and the belt restraint/buckle (110 (13.6%)), respectively. The three primary 

injury sources for child occupants involved in side impacts in pre 1998 manufactured 

vehicles were similar to the primary injury sources found regardless of vehicle 

manufacture year.  For the 555 child occupants involved in side impacts in pre 1998 

manufactured vehicles, the primary injury sources were the vehicle’s interior (158 

(28.5%)), the seat, back support (97 (17.5%)), and the belt restraint/buckle (60 (10.8%)), 
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respectively. It should be noted that during an oblique lateral impact, as collision forces 

change the velocity of the struck vehicle, the occupant of the vehicle will continue to travel 

at its pre-collision velocity.  The discrepancy between the velocity of the struck vehicle 

and the velocity of the occupant produces occupant movement both laterally and 

longitudinally relative to the vehicle interior. This movement of the occupant continues 

until arrested via the restraints, if worn, or the vehicle’s interior, if seat restraints are not 

worn. It is this forward motion of the occupant into the seatbelt restraint system that 

provides possibility for injury. Although seat restraints tend to reduce injury, they don’t 

prevent any injury from occurring.  (Rouhana and Foster, 1985).  

For the 255 child occupants involved in side impacts in vehicles manufactured from 

1998 to 2014, the primary injury sources were found to be the belt restraint/buckle (52 

(19.6%)), the vehicle’s interior (47 (18.4%)), and the seat, back support (33 (12.9%)), 

respectively. 

Table 2.3.9 represents the injury source for child occupants involved in side impact 

by age in vehicles manufactured prior to 1998. The primary injury source for child 

occupants of all ages studied who were involved in a side impact in a vehicle 

manufactured prior to 1998 was the vehicle’s interior.  The second primary injury source 

for the child occupants of vehicles manufactured prior to 1998 involved in side impacts 

was the seat, back support, except for the 7-year-old age level.  At the 7-year-old age 

level, belt restraint/buckle was the second primary injury source documented, and the 

seat, back support was documented as the third primary injury source. The third primary 

injury source for all other child occupant age levels involved in side impact in pre-1998 

manufactured vehicles was documented as either belt restraint/buckle or flying. 
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It should be noted that any injury source documented as “ground” was verified from 

actual NASS case references as being from an occupant that was ejected due to impact 

forces and not ground contact due to rollover, as rollovers were omitted from this study.  

Table 2.3.9 Injury Source Distribution by Age of Child Occupants in Side Impacts 
involving Vehicles Manufactured Prior to 1998 - NASS-CDS Database from 1991-2014 

 

Table 2.3.10, below, illustrates the injury sources for child occupants involved in 

side impact by age in vehicles manufactured from 1998 to 2014. For the 4-year-olds, the 

top two primary injury sources were documented as the child seat and pillar structure, 

respectively.  The seat, back support and the belt restraint/buckle were both documented 

as the third primary injury source for 4-year-olds involved in side impacts in vehicles 

manufactured from 1998 to 2014.  The top two injury sources for child occupants aged, 

8, 9 and 10, in side impacts involving vehicles manufactured from 1998 to 2014 were 

found to be vehicle’s interior and the belt restraint/buckle. The third primary injury source 

for the 8-year-old was the pillar structure while the seat/back support was the third primary 

injury source for the 9 and 10-year-olds.  For 6 and 7-year-olds involved in side impacts 

in vehicles manufactured from 1998 to 2014, the top three injury sources were found to 
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be belt restraint/buckle, vehicle interior, and seat, back support.  The top three injury 

sources for 5-year-old child occupants in side impacts involving vehicles manufactured 

from 1998 to 2014 were found to be the pillar structure, belt restraint/buckle, and other 

occupants.   

Table 2.3.10 Injury Source Distribution by Age of Child Occupants in Side Impacts 
involving Vehicles Manufactured from 1998 to 2014 - NASS-CDS Database from 1991-

2014 

 

CIREN Database 

A fairly even age distribution of child occupants in side impact was also noted for 

the 25 child occupants extracted from the CIREN database, except the number of 5 and 

8-year-olds.  From the child occupants involved in side impact extracted from CIREN 

database, there was only one 5-year-old and eight 8-year-olds documented, as illustrated 

in Table 2.3.11, below. 
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Table 2.3.11 Age Distribution for Child Occupants in Side Impacts Extracted from the 
CIREN Database from 1996 through 2014 

 

Using the designated seat position numbering system previously illustrated in 

Figure 2.3.1 for the 25 child occupants involved in a side impact extracted from the CIREN 

database,  the majority, or 72.0% (18 of 25), of the child occupants extracted from the 

CIREN database were documented as being seated in either the second row right 

position (10 (40.0%) Seating Location 6) or second row left position (8 (32.0%) Seating 

Location 4), respectively (Table 2.3.12).  The remaining 7 child occupants were 

documented as sitting in the front row right (3 (12.0%) Seating Location 3) and second 

row middle (4 (16.0%) Seating Location 5). 

Table 2.3.102 Age Distribution for Child Occupants in Side Impacts Extracted from the 
CIREN Database from 1996 through 2014 

 

Of the 25 CIREN database child occupants involved in side impact studied, only 5 
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(20.0%) were documented as using a child restraint system (CRS), 19 (76.0%) were 

documented as being restrained to some extent, and only 1 child occupant was 

documented as being unrestrained.    

When broken down by side impact PDOF, 10 (40.0%) of the 25 child occupants 

experienced the impact force from the 2 o’clock direction, 2 (8.0%) experienced impact 

from the 4 o’clock direction, 7 (28.0%) experienced impact from the 9 o’clock direction, 

and 6 (24.0%) experienced impact from the 10 o’clock direction.  Side impact direction 

distribution for the 25 child occupants involved in side impact extracted from the CIREN 

database is illustrated in Figure 2.3.3 for reference below.  Based on seat location relative 

to PDOF, 7 (28.0%) of the child occupants were documented as near side occupants to 

the location of impact, 14 (56.0%) were documented as far side occupants, and 4 (16.0%) 

were documented as middle seat occupants relative to impact. 

 

Figure 2.3.4 CIREN Database Side Impact PDOF Distribution 

 Maximum injury severity distribution for the 25 child occupants was documented 
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with respect to side impact (Table 2.3.13). Of the 25 child occupants, 7 (28.0%) of the 

child occupants were documented as receiving MAIS 0 injuries, 8 (32.0%) were 

documented with MAIS 1 injuries, 2 (8.0%) were documented with MAIS 2 injuries, 5 

(20.0%) were designated with MAIS 3 injuries, 2 (8.0%) were documented with MAIS 4 

injuries, and 1 (4.0%) were documented with MAIS 9 injuries. There were no documented 

MAIS 5 or 6 injuries.   

Table 2.3.11 MAIS Distribution of Child Occupants in Side Impacts Extracted from the 
CIREN Database from 1996 through 2014 

 

All 25 child occupants extracted from the CIREN database involved in side impact 

collisions were in vehicles manufactured from 1998 or newer, therefore, there was no 

need to perform a separate analysis based on vehicle manufacture year for this database.  

Table 2.3.14 shows MAIS distribution broken down by age for the child occupants studied.  

Of the three 4-year-olds included in the study, two were documented with MAIS 0 injuries 

and one was documented with MAIS 1 injuries. The only 5-year-old included in the study 

was documented as having no injuries. Of the four 6-year-olds included in the study, one 

was documented with MAIS 0 injuries, one was documented with MAIS 1 injuries, one 

was documented with MAIS 2 injuries, and one was documented with MAIS 4 injuries.   

Of the three 7-year-olds included in the study, one was documented with MAIS 1 injuries, 
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one with MAIS 2 injuries, and one with MAIS 3 injuries. Of the eight 8-year-olds included 

in the study, two were documented with MAIS 0 injuries, two with MAIS 1 injuries, one 

with MAIS 2 injuries, two with MAIS 3 injuries, and one with MAIS 9 injuries. Of the three 

9-year-olds included in the study, one was documented with MAIS 0 injuries, one with 

MAIS 1 injuries, and one with MAIS 3 injuries.  Of the three 10-year-olds included in the 

study, two were documented with MAIS 1 injuries and one with MAIS 4 injuries. 

Table 2.3.12 Distribution of Child Occupants in Side Impacts by Age and MAIS for 
Vehicles Manufactured from 1998 to 2014 - CIREN Database Years 1996-2014 

 

 Details involving injured body regions and injury sources were not documented in 

the CIREN database for occupants that were not considered case study occupants.  The 

majority of the child occupants extracted from the CIREN database were not case study 

occupants, and therefore, injured body regions and injury source were not analyzed 

based on this database source for the current study. 

2.4 – Discussion 

 The current epidemiological study was aimed at providing relevant information 

regarding the level of injury severity, most injured body region, and injury source in the 

pediatric population during lateral and oblique impacts. Although the number of cases in 

some categories are relatively small and unyielding of any statistical significance, 

tendencies have been observed that prove to be helpful for the stated goal. 

Based on the data analyzed in the current study, the majority of child occupants 
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(51.1% from the NASS database and 72.0% from the CIREN database) , ages 4 to 10, 

involved in side or oblique impacts were seated in either the second row left or second 

row right seating positions (seating locations 4 or 6).  This is most likely due to the 

increased awareness for the need for child safety in motor vehicles beginning in the mid-

1990’s, when vehicle’s began to have frontal airbags as standard equipment, as well as 

the establishment of seatbelt and child safety laws requiring child occupants to be 

restrained in seating positions aft of the first row of a vehicle.  Interestingly, following the 

two second row outboard seating positions, the next most populated seating location by 

child occupants in side and oblique impacts, documented in the NASS database, was the 

front row right seating position at 23.9% (seating location 3).  Of the 197 (23.9%) child 

occupants in the NASS-CDS database documented as seated in seat location 3, 22 

(11.2%) were 4-years-olds, 29 (14.7%) were 5-year-olds, 24 (12.2%) were 6-year-olds, 

35 (17.8%) were 7-year-olds, 22 (11.2%) were 8-year-olds, 28 (14.2%) were 9-year-olds, 

and 37 (18.7%) were 10-year-olds. Three out of the 25 child occupants studied from the 

CIREN database, or 12.0%, were documented as sitting in seat location 3 and were 9 to 

10 years of age.  

It has been shown by the data analyzed in the current study that the majority of 

side and oblique impacts occurred in either the 2 o’clock (37.2% - NASS-CDS; 40.0% - 

CIREN) or 10 o’clock (31.4% - NASS; 24.0%-CIREN) PDOF directions. The majority 

(67.9%) of lateral and oblique impacts occurred at a PDOF equal to either 10 or 2 o’clock, 

indicating that most of the struck vehicles had some significant forward velocity.  These 

findings are consistent with Rouhana and Foster (1985) who documented in their study 

that nearly three-quarters (74%) of lateral impacts had a PDOF equal to 10, 11, 1, or 2 
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o’clock.  

Child occupants were fairly evenly distributed in the NASS-CDS database as either 

far side (38.2%) or near side (45.2%) occupants in side and oblique impacts, with near 

side occupants being slightly more prevalent. The majority of child occupants in the 

CIREN database were documented as far side (56.0%) compared to the near side 

(28.0%) occupants.   

The majority (68.2%) of child occupants involved in side and oblique impacts 

extracted from the NASS-CDS database were reported as being restrained to some 

extent; however, only 10.2% of those reported as restrained were identified as using a 

child seat. Of the 84 child occupants documented as using a child seat, only 6 (7.1%) 

were reported as being in the age range of 8 to 10.  The remaining 78 (92.9%) child 

occupants reported as using child seats included 32 (38.1%) 4-year-olds, 20 (23.8%) 5-

year-olds, 15 (17.9%) 6-year-olds, and 11 (13.1%) 7-year-olds. A decrease in child seat 

use was expected with age; however, lack of child seat use does not mean the child 

occupant was necessarily ready to be out of a child seat based on government 

recommendations.   

The large majority of MAIS injuries to child occupants in side and oblique impacts 

identified in both databases (73.5% - NASS; 60.0% - CIREN) were reported as having 

either MAIS 0 or 1 level injuries (none to minor), and the remaining 26.5% of child 

occupants identified in the NASS-CDS database and 40.0% of child occupants identified 

in the CIREN database were documented as having MAIS 2+ injuries. Neither age nor 

vehicle manufacture year seemed to play a factor in terms of the distribution of minor 
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(MAIS 1) injuries in the current study.  There does appear to be a higher number of 

MAIS2+ injuries in vehicles manufactured prior to 1998 than in vehicles manufactured 

from 1998 to 2014 which could potentially be related to advanced side impact safety 

technologies implemented into the newer model vehicles but more research is needed 

for verification. 

According to the study performed by Hanna (2010), approximately 27.0% of child 

passengers ages 0 to 7 were involved in side impact motor vehicle crashes.  Although 

the current study considered children ages 4 through 10, the rate of child occupants 

involved in side motor vehicle crashes is consistent with the CIREN database analysis 

(25.5%) but somewhat lower than the NASS-CDS database distribution (40.2%). The 

incidence rate for children unrestrained in a motor vehicle in a lateral impact in the Hanna 

(2010) study was found to be 21% compared to 31.8% based on the NASS-CDS 

database for the current study. The higher rate of unrestrained occupants in the current 

study, based on the NASS-CDS, may be due to the older age range analyzed in the 

current study and the expectation that older children will put their own restraint on versus 

infants studied in Hanna (2010) who cannot.  Only 1 child was reported as being 

unrestrained out of 25 child occupants in side and oblique impacts in the CIREN 

database.  Any comparison of the rate of restraint use from this database should be 

cautioned due to the relatively low number of child occupants from this database meeting 

the current study’s criteria.  

The vast majority of injuries identified in the current study using the NASS-CDS 

database (49.2%) occurred at the head and face regions of child occupants involved in 

side and oblique impacts. These findings are consistent with Lesire et al. (2001) in which 
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the head was found to be the body region most severely injured. Upper and lower 

extremities were also identified as being regions of the body frequently injured (11.2% 

and 13.3% of the total injuries, respectively).  Thorax (6.7%) and abdomen (8.8%) body 

regions were likewise recognized as significant injury locations in side and oblique vehicle 

impacts for child occupants.  Upon further detailed review of the data, again, the majority 

of MAIS injuries to the thorax and abdomen were MAIS 2 or less and appeared not to be 

affected by age of the child occupant or vehicle manufacture year. There appeared to be 

a higher number of thorax and abdominal MAIS3+ injuries in vehicles manufactured prior 

to 1998 (23 total) than in vehicles manufactured from 1998 to 2014 (7 total)  which could 

potentially be related to advanced side impact safety technologies implemented into the 

newer model vehicles but more research is needed for verification. 

The main sources of injury for child occupants in side and oblique impacts were 

reported in the NASS-CDS database as vehicle interior, seat, back support, and belt 

restraint/buckle.  For vehicles manufactured prior to 1998, the primary sources of injury 

were vehicle interior, seat, back support, belt restraint/buckle, and flying glass.  For 

vehicles manufactured from 1998 to 2014, primary injury sources included vehicle interior, 

seat, back support, belt restraint/buckle, pillar structure, and for the 4-year-olds, child 

seat.  When considering only thorax and abdomen body regions, the primary sources of 

injury were documented as the vehicle interior or the belt restraint/buckle.  

The above findings in the current study are consistent with Maltese et al. (2007) 

who documented that the majority of head and face impacts were with the vehicle’s 

interior structures.  
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2.5 – Conclusions 

 Several main conclusions were drawn from this epidemiological study: 

1) Age did not seem to have an effect on injury severity, body region injured, or injury 

source in side and oblique impacts for minor injuries. 

2) Vehicle manufacture year did not seem to have an effect on injury severity, body 

region injured, or injury source in side and oblique impacts. 

3) The majority of side and oblique impacts occurred in either the 2 o’clock or 10 

o’clock PDOF directions. 

4) The majority of child occupants, age 4 through 10, involved in side and oblique 

impacts were reported as being restrained to some extent; however, only a small 

percentage of those reported as restrained were identified as using a child seat. 

5) The vast majority of MAIS injuries to child occupants in side and oblique impacts 

were reported to be either MAIS 0 or 1 level injuries (none to minor). 

6) The main sources of injury for child occupants in side and oblique impacts were 

reported in the NASS-CDS database as vehicle interior, seat, back support, and 

belt restraint/buckle. 

7) The vast majority of injuries identified in the current study, using the NASS-CDS 

database, occurred at the head and face regions (49.2%) of child occupants 

involved in side and oblique impacts. Upper and lower extremities were also 

identified as being regions of the body frequently injured (11.2% and 13.3% of the 

total injuries, respectively).  Thorax (6.7%) and abdomen (8.8%) body regions were 

likewise recognized as significant injury locations in side and oblique vehicle 

impacts for child occupants.   
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8) There appears to be a higher number of thorax and abdominal MAIS3+ injuries in 

vehicles manufactured prior to 1998 than in vehicles manufactured from 1998 to 

2014 which could be due to advanced side impact safety technologies 

implemented into the newer model vehicles. 

9) When considering only thorax and abdomen body regions, the primary sources of 

injury were documented as the vehicle interior or the belt restraint/buckle.  During 

an oblique lateral impact, as collision forces change the velocity of the struck 

vehicle, the occupant of the vehicle will continue to travel at its pre-collision 

velocity.  The discrepancy between the velocity of the struck vehicle and the 

velocity of the occupant produces occupant movement both laterally and 

longitudinally relative to the vehicle interior. This movement of the occupant 

continues until arrested via the restraints, if worn, or the vehicle’s interior, if seat 

restraints are not worn. It is this forward motion of the occupant into the seatbelt 

restraint system that provides possibility for injury. In vehicle safety research, ATD 

biofidelity, and the ATD thorax, abdomen, and pelvis anthropometry need to be 

accurate in order to generate injury patterns observed in real world collisions.  

10) Based on the current epidemiological study performed, in order to continue to 

advance child safety technologies and protect child occupants in lateral vehicle 

impacts, more innovative and biofidelic child anthropometric test devices (ATDs) 

need to be designed. 
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CHAPTER 3 - BIOFIDELIC ASSESSMENT OF THE 6-YEAR-OLD ATDs IN LATERAL 
IMPACT (SPECIFIC AIM 2) 

3.1 – Background 

In 2011, NHTSA published their Biomechanics Research Plan for 2011-2015.  

NHTSA’s plan included research in the advancement of both front and side impact child 

dummies (NHTSA, 2011). Most recently, in January of 2014, NHTSA proposed an 

upgrade to the Federal Motor Vehicle Safety Standard for child restraint systems (FMVSS 

213).  This proposed upgrade includes a side impact test utilizing a Q3s child dummy for 

assessing car seats sold in the United States, designed for children weighing up to 40 

pounds.  The goal of the proposed upgrade to FMVSS 213 is to work toward making sure 

child passengers are protected in side impacts (NHTSA, 2014B). 

Research has shown a need for assessment and development of child side impact 

dummies. Customarily, the biofidelity of adult ATDs has been assessed using PMHS 

data.  Due to paucity of pediatric PMHS tests, biofidelity targets for children have been 

scaled from adult response data. Irwin and Mertz (1997) derived seven different length 

scale factors, four different mass scale factors, as well as a scale factor for the elastic 

bending modulus of bone to scale adult response data to the child utilizing the best 

available child anthropometry and bone property studies at the time.  One issue with 

scaling from an adult to a child is that children are not just small adults.  From a 

biomechanical perspective, there are not only changes with growth in body proportions 

and skeletal structure but with tissue and bone properties (Franklyn et al. 2007; Wenger 

and Pring, 2005). For instance, the cortex of young bones tends to be more porous and 

flexible than adult bones (Wenger and Pring, 2005).   
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The purpose of the current study is to provide performance results for the biofidelity 

of the 6-year-old anthropometric test dummies’ (HIII (with Ford-designed abdomen insert 

described in Rouhana (2006) and Elhagediab et al. (2006) and UMTRI-designed pelvis 

described in Klinich et al. (2010)), Q6, and Q6s) shoulder, thorax, abdomen, and pelvis 

regions in lateral impact. According to Humanetics Innovation Solutions (a manufacturer 

of the HIII and Q-series dummies), there are currently two 6-year-old ATDs, the HIII and 

the recently developed Q6, both of which are designed primarily for frontal impact testing.  

The Q6s is a prototype lateral impact dummy.  The prototype Q6s is built on the platform 

of the Q6 but the neck, shoulders, thorax, and hip joints have been modified to improve 

durability and biofidelity in lateral impact.  The Q6s also has additional measurement 

channels. 

3.2 – Methods 

The objective of this specific aim was to assess the design and biofidelity of the 

current 6-year-old HIII (with Ford in-house abdominal insert), Q6, and Q6s prototype 

anthropometric test dummies (ATD) in lateral loading. The biofidelity performance in 

lateral impact for the three ATDs was assessed against the scaled biofidelity targets 

published in Irwin et al. (2002), the abdominal biofidelity target suggested in van Ratingen 

et al. (1997), and the biofidelity targets published in Rhule et al. (2013).  Regional and 

overall biofidelity rankings for each of the three ATDs were performed using both the ISO 

9790 Biofidelity Rating System (ISO/TR 9790 1999) and the National Highway Traffic 

Safety Administration’s (NHTSA) External Biofidelity Ranking System (BRS) (Rhule et al., 

2013).  This specific aim provided an understanding of the current mechanical behavior 

of the current 6-year-old ATDs in lateral impact and to determine the body regions of the 
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6-year-old ATDs requiring further research and development.    The complete assessment 

included (Table 3.2.1):  

Shoulder:  (1) ISO pendulum test, (1) ISO WSU rigid sled test  

Thorax: (1) ISO pendulum test, (2) ISO drop tests, (1) ISO WSU rigid sled test 

Abdomen: (1) van Ratingen pendulum test, (1) ISO drop test, (1) ISO WSU rigid 

sled test 

Pelvis: (1) ISO pendulum test, (2) ISO drop tests, (1) ISO WSU rigid sled test 

Table 3.2.1 ATD Biofidelity Assessment in Lateral Impact Test Matrix 

 

A series of lateral impact pendulum tests, vertical drop tests, and WSU 6.8 m/s 

rigid sled tests were performed using the 6-year-old ATDs.  Since the Q6s is still a 

prototype and the opportunity to compare all three ATDs is rare, testing in the current 

study was conducted to establish whole body and component level responses, and higher 

level testing such as the 6.7 m/s thorax pendulum impact test, 10.0 m/s pelvis pendulum 

impact test, 2-meter drop test, and 8.9 m/s sled test were omitted to maintain ATD integrity 

throughout the entire test sequence.  This would provide a better understanding of the 

overall biofidelity performance of these dummies to aid in their future design and 
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performance. Component level testing (pendulum tests) was conducted in order to 

analyze the individual body region responses of each dummy.  Rigid sled and drop tests 

were conducted in order to assess individual body region responses of each dummy as 

well as whole dummy response and kinematics. The protocols for the above described 

tests were based on the procedures detailed in ISO/TR 9790 (1999) and scaled for the 

6-year-old using Irwin et al. (2002). The abdomen used in the 6-year-old HIII ATD for the 

current analysis is the Ford-designed abdomen, which is a fluid-filled compressible 

silicone abdominal insert that sits in the space between the bottom of the rib cage and 

the modified pelvis structure described in Klinich et al. (2010). The three ATDs tested 

were instrumented with  tri-axial accelerometers attached to mounting blocks at the head 

center of gravity (CG), T1 and T12 levels of the thoracic spine, the middle rib (at the 

equivalent HIII 6-year-old ATD rib 3-4 location), and lumbar spine. The accelerometers 

mounted in the lateral impact direction were Endevco 7264-2000TZ (2000 G) 

piezoresistive accelerometers. The accelerometers mounted in the longitudinal and 

vertical directions were Measurement Specialties 64C-0200-360T (200 G) piezoresistive 

accelerometers.  The T1, T12, and lumbar spine tri-axial accelerometer mount blocks 

were attached to the posterior side of each dummy’s spine box for consistent 

accelerometer readings.   An IR-TRACC™ linear transducer (Humanetics Innovative 

Solutions, Plymouth, MI; Rouhana et al., (1998)) was installed laterally in each dummy’s 

rib cage, to measure rib deflection relative to the spine in a left side impact at the 

equivalent HIII 6-year-old rib 3-4 location.  Six-channel load cell force and moment 

sensors (Humanetics) were installed and data was recorded at the upper neck, lower 

neck, and pelvis in the Q6 and Q6s ATDs and at the upper neck in the HIII ATD. All 
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sensors were connected to a TDAS data acquisition system (Diversified Technical 

Systems (DTS), Seal Beach, CA), and data was collected at a sampling rate of 10,000 

Hz. The impact events were captured at 1,000 frames per second by a high-speed video 

camera (Kodak 2k). Three replicate runs were performed for each of the tests. 

  The data collected was filtered using the SAE J211 Recommended Practice 

(2003), aligned using the methodology described in Donnelly and Moorhouse (2012), and 

compared for each body region tested (shoulder, thorax, abdomen, and pelvis).  The 

biofidelity performance in lateral impact for the three ATDs was assessed against the 

scaled biofidelity targets published in Irwin et al. (2002), abdominal biofidelity target 

suggested in van Ratingen et al. (1997), and biofidelity targets described in Rhule et al. 

(2013).  Body region and overall biofidelity rating scores were determined for each of the 

three 6-year-old ATDs tested using both the ISO 9790 Biofidelity Rating System (1999) 

and NHTSA’s External Biofidelity Ranking System (BRS) (Rhule et al., 2013). 

 Pendulum Tests 

A flat-faced, rigid, aluminum probe was fabricated for use in the shoulder, thorax, 

and abdomen lateral impact pendulum tests. The impacting surface had a diameter of 

88.9 millimeters with a 12.7-millimeter edge radius.  This is slightly smaller than the 

diameter for the thorax impactor face (106 millimeters) and shoulder impactor face (97 

millimeters) specified in Irwin and Mertz (2010) based on scaling techniques. The 

pendulum probe size used in the current study was chosen because it is the size of the 

impacting probe used to calibrate the Q6 in side impact (Q6 User Manual, 2012), to 

reduce testing complexity, and because it also provided a geometric fit (impact of the 

thorax only without bridging to other body regions of the ATD) to the side of all three 
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tested dummies.  The pendulum mass was 2.9 kilograms which was consistent with the 

pendulum mass specified by Irwin et al (2002) for the 6-year-old. A uniaxial accelerometer 

was mounted on the rear of the pendulum. The pendulum impact force was obtained by 

multiplying the pendulum mass by the recorded acceleration data. 

A flat-faced, rigid, aluminum pendulum probe was fabricated for use in the pelvis 

lateral impact pendulum tests. The impacting surface had a 76.2-millimeter diameter with 

a 12.7-millimeter edge radius. The diameter was based on a similar method used by 

Carlson et al. (2007) to scale the pelvis probe for the 50th-percentile male side impact 

dummy to the Q3s. In the current study the probe scaling was done to the 6-year-old 

dummy age level, which is slightly smaller in diameter than the impactor face (84 

millimeters) specified in Irwin and Mertz (2010). When the geometric arc of the 50th 

percentile male ATD impact probe (which is the salad bowl impact face) is applied to the 

smaller diameter impactor face for the 6-year-old the curvature is almost non-existent and 

would result in only minimal, if any, differences in the force response compared to a flat-

faced impactor. It was decided, based on this rationale, to use a flat-faced impactor for 

the pelvic pendulum impact testing. The pendulum mass was 3.89 kilograms, consistent 

with the pendulum impactor mass specified in Irwin et al. (2002).  A uniaxial accelerometer 

was mounted on the rear of the pendulum. The pendulum impact force was obtained by 

multiplying the mass and acceleration data.   

The ATDs were seated on two sheets of 3.2-millimeter thick mechanical grade 

Teflon™ for all pendulum tests. The ATDs were impacted on their left side. The ATDs were 

rotated to an oblique 60-degree angle from anterior-posterior for the abdominal pendulum 

impact tests in accordance with testing performed by van Rantingen et al. (1997) and 
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scaled abdominal impact response corridors developed in that study based on the oblique 

abdominal impact testing proposed in Viano (1989A).  An optical sensor speed trap was 

used to verify pendulum speed just prior to impact.   

Vertical Drop Tests 

A vertical drop fixture was fabricated, allowing the ATD to drop freely, using a flat 

metal frame structure, chains, and a two-stage “quick release” device.  The “quick 

release” device utilized a stage 1 - manual “quick release” and stage 2 - hybrid 

electromagnets (Kanetec USA Corp., Bensenville, IL).  Two separate rigid aluminum load 

plate surfaces (12-inch by 12-inch thorax load plate, 8-inch by 12-inch pelvis load plate) 

and a wooden armrest load surface were fabricated as specified in ISO 9790 Abdomen 

Impact Response Requirement 1 (1999) for impact of the dummy torso, pelvis, and 

abdomen, respectively. The armrest was designed as specified and was not scaled down 

to the 6-year-old because it was interpreted to be representative of a simulated armrest, 

impacted in a vehicle side impact environment.  No size was specified in the ISO 9790 

Abdomen Impact Response Requirement 1 (1999) for the thorax and pelvis load plates.  

Load plate sizes for the current study were chosen based on the anthropometries of the 

6-year-old dummies and the ability to obtain complete and accurate contact of the dummy 

thorax and pelvis regions. Ten 4,448-Newton (1,000-pound) capacity load cells 

(Transducer Techniques, Temecula, CA) were used to acquire dummy impact force loads 

(four mounted under each torso and pelvis load plate and 2 mounted under the wooden 

armrest). The ATD was positioned based on ISO 9790 specifications (1999).  

Drop distances from the ATD to the impact surface were 1.0-meter and 0.5-meters, 

respectively. The wooden armrest was removed for the 0.5-meter drop test per ISO 9790 
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test requirements.  The ATDs used were on loan, and therefore, in an effort not to damage 

them, the ISO 9790 2.0 meter drop test was excluded from the current study. 

WSU 6.8 m/s Rigid Sled Test 

A bench and impact wall based on the WSU design documented in Cavanaugh et 

al. (1990) were scaled from the 50th-percentile male anthropometry sled setup to a size 

appropriate for the 6-year-old.  Five impact beams were used and the locations were 

scaled to target the shoulder, thorax, abdomen, and pelvis (iliac crest and greater 

trochanter region).  The bench and wall were fixed on the WSU HyGe sled. Two 4,448-

Newton (1,000-pound) capacity load cells were installed on the back of the impacted side 

of each of the five impact beams.  Lateral impact force data was acquired at each beam 

level, consistent with previously specified body regions during impact. Each ATD was 

seated at a distance from the rigid impacting wall to allow the sled to achieve a constant 

impact speed of 6.8 m/s relative to the wall before impact occurred. 

 Data Post Processing and Analysis 

Pendulum impact force, load cell data, and ATD lateral acceleration and force data 

were analyzed. Sensor data were filtered according to the SAE J211-1 Recommended 

Practice except for the thorax and abdomen pendulum mass accelerometers which were 

filtered using the FIR 100 filters per ISO 9790.  

ISO 9790 biofidelity rating system analysis 

The data from replicate runs were aligned using the optimized phase cross-

correlation methodology described in Donnelly and Moorhouse (2012). In order to assess 

the repeatability of the dummy test parameter responses, a single value peak response 

Percent Coefficient of Variation (%CV), as defined in Moorhouse (2013), was calculated 
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for each of the aligned test data sets for each of the dummies. The data was aligned at 

time zero based on initial contact between the dummy and the contact surface.  Time zero 

was determined using synchronized test video and data. Sensor data for each body 

region (shoulder, thorax, abdomen, and pelvis) were compared among the three ATDs. 

The biofidelity performance for the three ATDs in lateral impact was assessed against the 

scaled biofidelity targets published in Irwin et al. (2002).   Regional body biofidelity ratings, 

Bi, for the four body regions tested, were calculated using Eq. (1) (ISO/TR9790, 1999) 

below: 

 

𝐵𝑖 =  
∑ 𝑉𝑖,𝑗(

∑ 𝑊𝑖,𝑗,𝑘 𝑅𝑖,𝑗,𝑘𝑘=1,2,…𝑛
∑ 𝑊𝑖,𝑗,𝑘𝑘=1,2,…𝑛 )⁄𝑗=1,2,…𝑚

∑ 𝑉𝑖,𝑗𝑗=1,2,…𝑚
     (1) 

 

where: 

 Vi,j = The weighting factor for each test condition for a given body region 

 Wi,j,k = The weighting factor for each response measurement for which a 

requirement is given 

 Ri,j,k = The rating of how well a given response meets its requirements 

 i = The subscript denoting the body region 

 j = The subscript denoting the test condition for a given body region i  

 k = The subscript denoting the response measurement for a given test condition, 

j, and body region, i. 

Values for weighting factors, Vi,j and Wi,j,k, were determined through a poll of the 

ISO/TC22/SC12/WG5 experts and were provided in the ISO 9790 Technical Report 

(1999).  The ratings, Ri,j,k, were determined through evaluation of the response data by 
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me and the United States Council for Automotive Research, LLC (USCAR)/Occupant 

Safety Research Partnership (OSRP) Q-Series ATD Task Group and the assigned Ri,j,k 

values outlined in the ISO 9790 Technical Report as: 

Ri,j,k = 10  if response meets requirement 

Ri,j,k = 5  if response is outside requirement, 

but lies within one corridor width of requirement 

Ri,j,k = 0  if neither of the above is met. 

 

Once regional body biofidelity ratings were determined, an overall biofidelity rating, 

B, was calculated for each of the three tested 6-year-old ATDs using Eq. (2) (ISO/TR9790, 

1999) below: 

 

𝐵 =  
∑ 𝑈𝑖𝐵𝑖𝑖=1,2,…𝑚

∑ 𝑈𝑖𝑖=1,2,…𝑚
         (2) 

where: 

 B=The overall biofidelity rating with a value of 0 (poorest) to 10 (best), and 

 Ui=The weighting factor for each body region (which was given in ISO 9790). 

 

Based on the ISO 9790 Technical Report, five classifications indicate the ATD’s 

degree of biofidelity.  The WG5 experts specified the ATD’s biofidelity rating be greater 

than a value of 2.6 to be suitable for assessing side impact occupant protection.  The ISO 

9790 Technical Report (1999) degree of biofidelity classifications are described as 

follows: 
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Excellent Biofidelity:  8.6 < B < 10.0 

Good Biofidelity:   6.5 < B < 8.6 

Fair Biofidelity:   4.4 < B < 6.5 

Marginal Biofidelity:   2.6 < B < 4.4 

Poor Biofidelity:   0.0 < B < 2.6 

 

NHTSA biofidelity ranking system (BRS) analysis 

External biofidelity of the tested ATDs was analyzed using the BRS method, which 

included impact force response data.  An internal biofidelity analysis was not performed 

for this study since it would be comprised of only the thorax acceleration and deflection 

response data. Biofidelity response targets for this analysis were generated using the 

approach described in Rhule et al. (2013). Since 6-year-old PMHS response data were 

not available to develop response targets, the upper and lower response corridors from 

ISO 9790 response data were scaled to a 6-year-old and used to generate a mean 

biofidelity response curve.   The mean biofidelity response curve was then used to 

develop +/- one standard deviation biofidelity response targets for each of the tests.   

Replicate runs for each of the tests were aligned using the optimized phase cross-

correlation methodology described in Donnelly and Moorhouse (2012), producing a mean 

response curve for each ATD for each test.  The mean response curves for each of the 

ATDs for each test was then phase-minimized with the mean biofidelity response curve 

by using cross-correlation to determine the phase-shift, or lag, which minimizes the 

squared difference between the mean ATD response curve and the mean biofidelity 
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response curve.  Each ATD mean response curve was then shifted toward the mean 

biofidelity target response curve by the lag amount (Rhule et al., 2013).   

Using this phase-minimized data, the Shape and Magnitude Response 

Comparison Value (SM Value) and Phase Response Comparison Value (P Value) were 

calculated.  The SM value (or √R), is calculated by taking the square root of R.  The value 

R (or DCV/CCV), is the ratio of the cumulative variance between the ATD response and 

the mean biofidelity response curve (DCV), over the cumulative variance between the 

mean biofidelity response curve and the mean plus one standard deviation biofidelity 

curve (CCV).  The calculated SM value represents the difference between the ATD’s 

response and the mean biofidelity target response in multiples of standard deviation 

(Rhule et. al., 2002, 2013).  The P value is calculated by taking the ratio of the ATD’s 

phase lag and a standard acceptable lag.  The standard acceptable lag is determined by 

shifting the mean biofidelity response curve with respect to itself and calculating the lag 

between the shifted and unshifted mean biofidelity response curves such that √R = 1.  For 

P values less than 1.0, the ATD’s phasing is within tolerance of the one standard deviation 

of the mean biofidelity response target curve, and if the P value is greater than 1, the 

ATD’s phasing is multiples of standard deviation outside of the mean biofidelity response 

target curve (Rhule et al., 2013). 

SM and P values were determined for each response channel measured and the 

root mean square (RMS) of these two values was calculated to produce the total biofidelity 

quality for each response channel.  Each response channel RMS value for a given test 

condition was then averaged to produce an average biofidelity ranking for that test 

condition.  Each body region biofidelity ranking was determined by averaging its test 
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condition ranks.  The overall biofidelity ranking for each ATD was determined by 

averaging its tested body region rankings (Rhule et. al., 2013).  The lower the external 

biofidelity ranking, the more closely the ATD would tend to respond like a PMHS.  

According to Rhule et al. (2013), an external biofidelity ranking less than 2.0 would 

correspond to a dummy response that is as similar to a PMHS as it would be to another 

human subject.  

van Ratingen abdomen pendulum impact biofidelity target assessment 

Since ISO 9790 does not include abdomen pendulum impact tests as part of its 

biofidelity rating assessment, results from the abdomen pendulum tests were visually 

compared and assessed with respect to abdominal biofidelity targets suggested and  

published in van Ratingen et al. (1997).  These test results were, however, used in the 

BRS ratings of the three ATDs as one of the external impact tests performed on the 

abdomen region since the BRS rating system does not define specific tests for analysis 

but generally refers to pendulum impact testing, drop tests, and sled tests. Figure 3.2.1 

illustrates the NHTSA external BRS methodology for this particular study.  

 

Figure 3.2.5 BRS Calculation Flow Chart for ATD External Biofidelity Ranking 
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3.3 – Results 

Shoulder, thorax, abdomen, and pelvis response data for the three dummies tested 

were compared to the response requirements described in the ISO/TR9790 Technical 

Report, as scaled to the 6-year-old in Irwin et al. (2002), and to the biofidelity response 

targets determined from Rhule et al. (2013).  Pendulum impact abdominal response data 

for the three tested ATDs were compared to the response corridor suggested in van 

Ratingen et al. (1997).   

An example of the response requirement data comparisons for both the ISO 9790 

biofidelity rating analysis and the BRS are shown for the shoulder pendulum impact test 

in Figure 3.3.1.  All other ISO 9790, BRS biofidelity, and van Ratingen biofidelity response 

comparison graphs for the three ATDs tested, along with a summary table of tests per 

body region, are provided in the Appendix A. 

  

 

 

 

 

 

 

\ 

 

 

 

Figure 3.3.1 ISO 9790 Biofidelity Analysis (Left Plot) and BRS Analysis (Right Plot), 
Respectively, of ISO 9790 4.5 m/s Lateral Impact to Shoulder 

ISO 9790 analysis regional and overall biofidelity ratings for each of the three 

tested 6-year-old ATDs are provided in Table 3.3.1.  Values for the HIII 6-year-old  

biofidelity ratings for all four of its tested body regions were less than 2.6. The HIII 6-year-
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old would be considered inappropriate, based on the ISO 9790 WG5 experts specification 

that the ATD’s biofidelity rating be higher than a value of 2.6, for assessing side impact 

occupant protection. Based on the ISO 9790 biofidelity rating system, the Q6 and Q6s  

were determined to have marginal biofidelity at the shoulder (Q6 rating = 2.86; Q6s rating 

= 3.57) and abdomen (Q6 rating = 4.17; Q6s rating = 4.35). The Q6s resulted in a good 

ISO lateral impact biofidelity rating of the thorax (Q6s rating = 6.75), whereas the Q6 was 

found to have a fair biofidelity rating (Q6 rating = 6.19).  The HIII dummy would be 

considered unsuitable and the Q-series dummies would be considered marginal for 

assessing side impact occupant protection based on their overall ISO biofidelity ratings 

(HIII rating = 0.56; Q6 rating = 3.53; Q6s rating = 3.87), according to the ISO 9790 WG5 

experts specification. 

Table 3.3.1 ISO 9790 Analysis Regional and Overall Biofidelity Ratings 
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BRS rankings for the three tested ATDs are provided in Table 3.3.2.  According to 

the BRS external biofidelity ranking (Rhule et al., 2013), values less than 2.0 correspond 

to a dummy response that is as similar to a PMHS as it would be to another human subject 

(or a dummy response that is within two cumulative standard deviations of the mean 

PMHS response data).  Based on the BRS ranking system, all three 6-year-old ATDs 

were found to have a highest biofidelity ranking at the pelvis (HIII ranking = 4.97, Q6 

ranking = 5.06, Q6s ranking = 5.33), which indicates less than PMHS-like qualities. 

Table 3.3.2 BRS Analysis Regional and Overall Biofidelity Rankings 

 

The shoulder and thorax of the HIII also resulted in less than PMHS-like rankings 

(HIII shoulder ranking = 6.51; HIII thorax ranking = 2.92). The shoulder for the Q6 and 

Q6s (Q6 ranking = 2.70; Q6s ranking = 2.19) were within one standard deviation of 

NHTSA’s 2.0 level, with the Q6s performing more PMHS-like than the Q6. The BRS lateral 

impact biofidelity ranking for the abdomen region of all three ATDs performed with less 

than PMHS-like response qualities (HIII ranking = 3.39, Q6s ranking = 3.13, Q6 ranking 
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= 2.97).  The lateral impact biofidelity ranking for the Q6 thorax (Q6 ranking =1.64) fell 

within the BRS guidelines l while the Q6s thorax (Q6s ranking = 2.10) was 0.1 standard 

deviations above the BRS biofidelity response 2.0 level.  All three 6-year-old ATDs were 

above the BRS external biofidelity 2.0 level in overall biofidelity rankings (HIII ranking = 

4.45; Q6 ranking = 3.09; Q6s ranking = 3.19), indicating a dummy response is less than 

mean PMHS-like qualities by more than three cumulative standard deviations. 

3.4 – Discussion 

The biofidelity results presented in this paper were obtained to better understand 

how the mechanical response of each dummy compared to biofidelity response corridors. 

These corridors were based on those for the 50th-percentile male but were scaled to the 

size and material properties of a 6-year-old child.  This assessment will help further 

develop the biofidelity of child ATDs for future safety research especially with respect to 

side impacts.  

The Hybrid III ATDs are frontal impact dummies and were never designed for 

side impact testing. In addition, the Q6 is a frontal impact dummy, although it was 

originally intended to be an omni-directional ATD. Nevertheless, it was deemed 

worthwhile to include the Q6 and 6-year-old HIII dummies because comparing the 

responses and design differences of the three ATDs could help lead to better design of 

child side impact dummies. 

Shoulder Design and Biofidelity 

The biofidelity of the ATD shoulder, one of the first regions contacted in lateral 

impact, is very important. The shoulder of the HIII dummy consists of a metal yoke which 

is attached to the clavicles.  The motion of the entire assembly is controlled by various 



www.manaraa.com

74 
 

 
 

pivots and rubber and urethane components.  The Q6 dummies’ shoulder consists of a 

more human-like ball-and-socket joint simulating the glenohumeral joint. Molded and 

compressible rubber and other components attach the joint to the sternum and spine, 

allowing for better load transfer. Figure 3.4.1 depicts the design differences in the three 

6-year-old ATD shoulders from a rear view. 

 

Figure 3.4.1 Visual Comparison of 6-Year-Old ATDs Shoulder Design - Rear View 

The shoulders of the Q6 and Q6s are more biofidelic in design for lateral impact 

than the HIII 6-year-old shoulder. The Q6s shoulder design had the best biofidelity ranking 

or PMHS-like qualities in this region with a 3.57 ISO rating and a 2.19 BRS ranking.  The 

Q6 followed with an ISO rating of 2.86 and a BRS ranking of 2.70.  The Hybrid III had an 

ISO rating of 0.0 and had a 6.52 BRS rank.  Because the shoulder is typically the first 

region struck in side impact, its design and biofidelity are crucial in order to properly 

characterize dummy kinetics and kinematics during the impact sequence.  Recent efforts 

have been made by Suntay et al. (2011) to quantify pediatric shoulders stiffness. Ita et al. 

(2014) then compared this data to the Q3s ATD. Although the lack of child impact 

response data and representative animal surrogates make it difficult to advance the 

Q6s Q6 HIII 
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design of the pediatric shoulder region in lateral impact, efforts should continue to be 

made to advance research in this area. 

 

Thorax Design and Biofidelity 

The thorax of the 6-year-old HIII is comprised of an aluminum thoracic spine box 

with six individual ribs of spring steel and polymer-based damping materials. The Q6 and 

Q6s dummies’ thorax consist of an aluminum thoracic spine box and a single, deformable, 

more child-like shaped synthetic composite or a PVC outer skin layer bonded to a 

urethane rib cage, respectively (Q6 User Manual, 2012; Q3s User Manual, 2012). The 

Q6s rib cage is reinforced by a steel insert, and the corners of its rib cage are redesigned 

compared to the Q6 rib cage in order to avoid stress concentrations and improve fatigue 

resistance (Q3s User Manual, 2012). Figure 3.4.2 illustrates a comparison of the thorax 

design of three 6-year-old ATDs from a frontal view.  

 

Figure 3.4.2 Visual Comparison of 6-Year-Old ATDs Thorax Design - Frontal View 

The updated ribcage design of the Q series ATDs provides better lateral 

compliance as illustrated in the thorax test results of this study. The Q6s performed closer 

to the response corridors and therefore resulted in a better biofidelity rating or PMHS-like 

qualities (6.75 ISO rating and 1.69 BRS ranking) than the Q6 (6.19 ISO rating and 2.02 

BRS ranking) and HIII 6-year-old (0.75 ISO rating and 3.38 BRS ranking) based on both 

Q6 Q6s HIII 
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rating systems analyzed. To the best of the author’s knowledge, Seacrist et al. (2014) is 

currently the only other known study to analyze all three 6-year-old ATDs in lateral impact. 

Their study utilizes a different test methodology and outcome metrics than the current 

study. The 6-year-old ATDs were subjected to low speed lateral and oblique sled tests. 

The whole-body kinematics and responses of the ATDs were compared to those of 

human volunteer’s ages 6 to 11 years old subjected to similar sled tests.  Despite the 

differences in test methodology and outcome metrics, Seacrist et al. (2014) concluded 

that the Q6s ATD more closely matched the pediatric human volunteer belt-to-torso 

interaction and kinematics compared to the Q6 or HIII.  These findings appear to match 

well with the more biofidelic or PMHS-like qualities observed in the Q6s in lateral impact 

of the thorax compared to the Q6 or HIII dummies during the current study. 

Abdomen Design and Biofidelity 

The abdomen used in the 6-year-old HIII for the current analysis is the Ford- 

designed abdomen, which is a fluid-filled compressible silicone abdominal insert that sits 

in the space between the bottom of the rib cage and the pelvis structure.  The Q6 and 

Q6s both possess a foam covered by plastic skin abdomen that sits in the space between 

the rib cage and the pelvic structure.  Figure 3.4.3 shows a comparison of the abdomen 

design of all three 6-year-old ATDs from a frontal view. 
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Figure 3.4.3 Visual Comparison of 6-Year-Old ATDs Abdomen Design - Frontal View 

The current study showed that the abdomen test results of the Q6 and Q6s follow 

the ISO response corridor requirements relatively closely in the drop tests and sled tests 

performed. The Q6s abdomen performed closer to the ISO 9790 response corridors and 

therefore resulted in a better ISO biofidelity rating ( 4.35 ISO rating - fair) than the Q6 

abdomen (4.17 ISO rating- marginal).  The HIII Ford-designed abdomen received a 1.25 

ISO rating which is considered biofidelically unacceptable.  The Q6 resulted in a better 

BRS biofidelity ranking (2.97 BRS ranking) for the abdomen region than the Q6s (3.13 

BRS ranking).  The HIII Ford-designed abdomen region was rated a 3.38 using the BRS 

ranking system.  Based on the BRS ranking system, all three ATDs were determined to 

have less than PMHS-like qualities. The more PMHS-like quality ranking the HIII Ford-

designed abdomen received using the BRS ranking system versus the unacceptable 

biofidelic ranking the HIII Ford-designed abdomen received using the ISO ranking method 

may be a function of the difference in methodology between the two rating systems 

analyzed.  In addition, differences in response seen with the HIII Ford-designed abdomen 

compared to the Q-series dummies abdomens may be a function of the differences in the 

Q6 and Q6s abdomen and rib design, the fact that the Q6 upper arm is longer than the 

HIII and covers or shields this area to a certain extent (even though the arms were brought 

Q6s Q6 HIII 
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forward as if to have the hands resting on the dummy’s lap) during the drop and sled 

impact tests, or a combination of factors.  The HIII 6-year-old Ford-designed abdomen, 

however, appeared to perform closer to the pendulum response corridor requirements 

than the other dummies’ abdomens.  The arm is moved out of the way for the pendulum 

impact and therefore exposes more of the HIII abdomen itself based on the nature of its 

abdomen and rib design.  

The wooden armrest load surface used in the 1.0-meter vertical drop tests in the 

current study was not scaled down to the 6-year-old because it was interpreted by the 

author to be representative of a simulated armrest impacted in a vehicle side impact 

environment (as described in ISO 9790 Abdomen Impact Response Requirement 1 

(1999)).  To more directly assess the child ATD’s abdomen impact response, the 

simulated armrest (offset impact surface) should be scaled in future vertical drop testing 

as described in Irwin et al. (2010).   

Pelvis Design and Biofidelity 

The pelvis can also be the location of first contact in a side impact; therefore, pelvis 

design also plays a large role in the ATD’s overall lateral impact response and biofidelity.  

The 6-year-old HIII has a welded aluminum human-shaped pelvis casting with optional 

biaxial load cells on each ilium.  The pelvis is covered by vinyl skin over urethane foam 

and molded into a seated position. The HIII 6-year-old’s hip contains ball-jointed femur 

assemblies located within the pelvis casting in the lower torso which act as hip joints, 

allowing for hip joint rotation.  A shaft located on the end of the femur attaches to the ball-

jointed femur assembly in order to connect the HIII’s femur to its pelvis. (HIII 6-Year-Old 

User Manual, 2009).  The Q6 and Q6s pelves are comprised of a similar pelvis casting 
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which sits inside a foam pelvic flesh.  The Q6 and Q6s have ball-and-socket hip joint 

assemblies such that the ball attached to the upper legs can fit into the socket openings 

on the left and right sides of the pelvis casting. The hip joint socket of the Q6s is 

constructed to allow for some inward deflection of the hip joint (Carlson et al, 2007).   

Figure 3.4.4 shows a comparison of the pelvis design of three 6-year-old ATDs from an 

oblique view. 

 

Figure 3.4.4 Visual Comparison of 6-Year-Old ATDs Pelvis Design - Oblique View 

Like the shoulder, lack of child impact response data and representative animal 

surrogates make it difficult to advance the design of this body region in lateral impact.  

However, efforts should be made to continue to advance research in this area in order to 

properly characterize dummy kinetics and kinematics during lateral impact. The pelvis 

yielded the lowest biofidelity rating of all body regions using both rating systems.  All ATDs 

scored a zero ISO biofidelity rating for the pelvis.  The HIII did have a better BRS biofidelity 

ranking (4.97 BRS ranking) for the pelvis than the Q-series ATDs (5.06 BRS ranking for 

Q6 and 5.33 BRS ranking for Q6s).  This can most probably be attributed to the more 

stable seated pelvis design of the HIII compared to the compressible ball-in-socket joints 

of the Q-series ATDs.  

Q6 Q6s HIII 
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3.5 – Conclusions 

In lateral impact, overall, all three ATDs were found to be more biofidelic in the 

thorax and abdomen than the shoulder and pelvis, with the pelvis being the least biofidelic 

of all four tested body regions.  With respect to the BRS external ranking, none of the 

three tested 6-year-old ATDs had an overall ranking of 2.0 or less.  Based on this ranking 

system, none of the three ATDs have PMHS-like response qualities. With respect to the 

ISO biofidelity rating, the HIII dummy would be considered unsuitable and the Q-series 

dummies would be considered marginal for assessing side impact occupant protection.  

Further ATD development with respect to the thorax, abdomen, shoulder, and pelvis is 

clearly necessary to advance the biofidelity and usefulness of child ATDs in lateral impact 

occupant safety research.  With the shoulder and pelvis being the first body regions 

contacted in lateral impact, future research to advance the biofidelity of these body 

regions should be a main focus as they tend to take the brunt of the force and shield more 

vulnerable body regions such as the thorax and abdomen.  Testing performed by Tylko 

et al. (2009) exemplify this with results from a Q3s ATD in near side vehicle-to-vehicle 

impacts showing highest accelerations experienced at the hip, followed by the chest, and 

then the head.   Recent efforts have been made toward advancing knowledge of pediatric 

shoulder response; however, efforts should also be made to advance pediatric pelvis 

response in order to enhance pediatric ATD full body response in lateral impact.  
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CHAPTER 4 – LATERAL IMPACT ASSESSMENT AND COMPARISON OF 
APPROPRIATE AGE AND SIZE TORSO CADAVERIC PORCINE SURROGATES 
FOR FORMATION OF SURROGATE RESPONSE CORRIDOR SCALING 
RELATIONSHIP (SPECIFIC AIM 3) 

4.1 – A Review of the Use of Surrogate Scaling Techniques in Research 

Due to a paucity of pediatric PMHS for use in testing over history, researchers 

have had to consider other avenues to help establish response corridors for child crash 

test dummy design and development.  Response corridor development is central to 

establishing ATD response similar to that of humans. Normalization and scaling of 

response data has been an indirect technique to establish pediatric response biofidelity 

corridors for crash test dummy design and development, both through scaling of adult 

PMHS data and animal surrogate test data to the pediatric level.  Normalization of data 

can be described as the method by which measured impact responses from individual 

specimen tests with variable characteristics are brought into a standard. Scaling, 

particularly in impact biomechanics, can be used as a process to convert normalized 

response data from one standard group to another; for example, mid-size male lateral 

impact response corridor data to the pediatric population. (Petitjean et. al, 2015).   

Normalization and scaling techniques have been used for many years to establish 

response corridors from a standard group of data, using both human and animal 

surrogates.  

For instance, Reed et al. (2001) performed an analysis of already existing child 

anthropometry databases to develop reference dimensions for the 6-year-old child for an 

Occupant Classification ATD (OCATD).  Data included, among others, stature, weight, 

erect sitting height, shoulder breadth, shoulder-elbow length, chest breadth, waist 

breadth, and hip breadth.  Comparison of the database data analyzed in the Reed et al. 
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(2001) study for use to develop the OCATD to that of the data used as scaling parameters 

in Irwin and Mertz (1997) is presented in Table 4.1.1 below. 

Table 4.1.1 Irwin and Mertz (1997)/Reed et al. (2001) Characteristic Dimensions 
Comparison 

Dimension Description 6-Year-Old 

(Irwin and Mertz, 

1997) 

6-Year-Old 

(Reed et al., 2001) 

Standing Height (mm) 1168 1193 

Erect Sitting Height (mm) 635 653 

Shoulder Breadth (mm) 290 294 

Shoulder to Elbow (mm) 234 243 

Chest Depth (mm) 143 -- 

Chest Breadth (mm) 194 188 

Waist Breadth (mm) 168 194 

Hip Breadth (seated) (mm) 230 227 

Eppinger (1976), in evaluating PMHS thoracic impact data from several different 

sources, used a basic linear normalization approach (labeled a “scaling approach” by the 

authors) which assumed linear relationships between the central constraints of length, 

mass, and time as well as equal density and modulus of elasticity between the mass and 

its reference (dummy). 

Mertz (1984) derived an impulse-momentum normalization technique for specific 

body regions based on segment characteristics and type of impact test.  This approach 

used mass and stiffness ratios along with assumptions of lumped mass and spring 

models.  Mertz et al. (1989) established scaling criteria for the 5th percentile female and 
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95th percentile male Hybrid III ATDs from the 50th percentile male Hybrid III ATD, who’s 

biofidelity was based on dynamic responses relative to PMHS and limited volunteer data 

(Foster et al., 1977).  Geometric and mass scale factors were used to scale the Hybrid III 

50th percentile male design drawings and biomechanical impact response requirements 

to the corresponding target design size for preservation of scaled biofidelity response in 

each ATD design (Mertz et al., 1989). Irwin and Mertz (1997) used the scaling techniques 

from Mertz (1984, 1989) to develop biomechanical frontal impact response corridors for 

the HIII 3-year-old and 6-year-old child dummies and the Child Restraint Air Bag 

Interaction (CRABI) child dummies representing the 6-month, 12-month, and 18-month 

child.  In 2002, these similar scaling techniques were used to develop guidelines for 

assessing the biofidelity of dummies of all ages and sizes in side impact (Irwin et al., 

2002). 

Pintar et al. (2000) developed scaling factors as a percentage of adult properties 

to help develop neck strength characteristics of children using data collected regarding 

both nondestructive bending and tensile stiffness of individual functional spinal units from 

a caprine (goat) model.  Ching et al. (2001) used cadaveric baboon (Papio anubis) spines 

to study the outcome of spinal development on tensile mechanics of isolated cervical 

functional spinal units.  A skeletal maturation index based on computed tomographic (CT) 

assessment was used to scale animal surrogate age to human age equivalence.  Luck et 

al. (2008) studied eighteen pediatric PMHS osteoligamentous head-neck complexes in 

tension based on an age range of 20 weeks to 14 years. Findings in this study were used 

to assess animal surrogate cervical spine age-property scaling relationships to the 

prediction of human pediatric response.   
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Porcine have been used as a surrogate for human adults in a number of past 

studies (Gogler et al., 1977, Viano et al., 1989B, Viano et al., 1989C, Miller, 1989, 

Rouhana et al., 1989).   

Prasad and Daniel (1984) used piglets as surrogates to children to develop 

preliminary head, neck, and torso injury tolerance data for the child surrogates and 

compare it to a 3-year-old child test dummy.  A subjective anatomical comparison 

between the piglet and human’s major organs were made with respect to injury potential.  

It was determined that the piglet’s thoracic-abdominal organ masses were similar to those 

of a 3-year-old child; however, initial sternal deflection would increase intra-thoracic 

volume in the piglet, whereas it would decrease intra-thoracic volume in the child based 

on the difference in their rib cage design.  The piglet was also found to have a larger 

abdomen and a longer, more rigid ribcage, which would in effect better guard the liver 

and spleen from injury compared to a child. For each piglet test, a similar test was run 

using a 3-year-old child dummy in an attempt to associate dummy response with animal 

injury.  Engineering judgment was used to determine validity of response parameters.  

Kent et al. (2006) performed an anatomically focused necropsy study of 25 swine, 

aged from birth to maturity, in order to develop a properly sized and aged porcine 

surrogate model for the human 6-year-old.  The study established human anatomy and 

organ mass age trends.  Eight thoracoabdominal anatomical parameters were quantified 

for the human 6-year-old and used as targets to identify the porcine surrogate model that 

best characterized the 6-year-old human with respect to overall size through an 

optimization solution technique.  These parameters included liver mass, kidney mass, 

lung mass, sitting height, waist breadth, waist to superior sternum measurement, waist 
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depth, and trunk mass.  The data collected for the Kent et al. (2006) 6-year-old swine to 

human optimization study are provided in Table 5.1.2, below. Once a proper pig model 

was determined, this surrogate was tested to determine abdominal response 

characteristic of the swine through seatbelt loading. Although this comparison was made 

direct to the 6-year-old in the Kent et al. (2006) study, no attempt was made to establish 

biomechanical response data for any other age equivalent porcine model to human 

relationship.  Kent et al. (2009) and Lamp et al. (2010) compared 6-year-old PMHS 

thoracic and abdominal belt loading to the Kent et al. (2006) previously developed 6-year-

old porcine model to determine the efficacy of the porcine surrogate model in predicting 

human response.  

Table 4.1.2 Kent et al. (2006) Parameter Values and Sources Used for Porcine Model to 
6-Year-Old Human Optimization 
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4.2 – Swine Thoracic and Abdominal Anatomy 

The pig’s thoracic region spans from the base of the neck, superiorly (cranially), to 

the diaphragm, inferiorly (caudally).  It consists of the rib cage (thoracic vertebrae, ribs 

and sternum) and its underlying organs (primarily the heart and lungs).  Pigs typically have 

14 or 15 pairs of ribs, but have been found to vary anywhere from 13 to 17 pairs of ribs.  Like 

humans, the first 7 pairs of ribs attach to the sternum via shorter expanses of cartilage (Sack, 1982).  

The pig’s thoracic skeleton is illustrated in Figure 4.2.1 (Sack, 1982), below. 

 

Figure 4.2.1 Swine Thoracic Skeleton Identified by Yellow Box (Sack, 1982) 

The heart typically extends from the 2nd to the 5th ribs, occupies somewhat more than the 

anterior (ventral) half of the thoracic space, and like many other mammals, lies more to the left of 

the median plane (Sack, 1982). Porcine lungs are located within the rib cage, similar to humans; 

however, where the human left lung consists of two lobes and the right lung three lobes, the pig 

left lung consists of three lobes and the right lung consists of four lobes (Sack, 1982).  Figures 4.2.2 

and 4.2.3, below, show the location of the heart and lungs within the rib cage of the swine and 
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humans, respectively, for comparison. 

 

Figure 4.2.2 Swine Anatomy (Heart and Lungs Highlighted by Yellow Box) (“Atlas of 

Topographical Anatomy of the Domestic Animals – Volume 1” by Peter Popesko, W.B.Saunders 

Company, Philadelphia, 1977, Figure 96, Page 100. )

 

Figure 4.2.3 Human Anatomy (Heart and Lungs Highlighted by Yellow Box) 
(https://anatomyclass123.com/diagram-of-bones-of-thorax/diagram-of-bones-of-thorax-anatomy-of-

chest-and-abdomen-human-anatomy-library/) 

https://anatomyclass123.com/diagram-of-bones-of-thorax/diagram-of-bones-of-thorax-anatomy-of-chest-and-abdomen-human-anatomy-library/
https://anatomyclass123.com/diagram-of-bones-of-thorax/diagram-of-bones-of-thorax-anatomy-of-chest-and-abdomen-human-anatomy-library/
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 The pig’s abdominal cavity extends from the diaphragm to the pelvis.  Major 

abdominal organs include the liver, stomach, spleen, intestines, pancreas, and kidneys. 

The porcine liver is positioned inferior (caudal) to the diaphragm, and consists of five 

lobes, as opposed to a human liver which has four lobes.  The porcine liver is covered by 

the ribs except anteriorly (ventrally) and extends further inferiorly (caudally) on the right 

than the left (Sack, 1982). The porcine stomach is in contact with the liver and diaphragm 

superiorly (cranially) and in contact with the spleen to the left, the intestines anteriorly 

(ventrally), and the pancreas posteriorly (dorsally) (Sack, 1982).  The porcine spleen is 

long and narrow, as compared to the oval-shaped spleen of the human, and is located 

between the stomach and the intestines (Sack, 1982). As observed in Figures 4.2.2 and 

4.2.3 above, the general location of the major abdominal organs are similar in the swine 

and human. 

Any animal model has accompanying limitations in terms of its ability to represent 

human response. There are also associated limitations with respect to scaling animal 

models to reflect human response due to variances in size and species.  Scaling 

techniques have been developed in past research with respect to the cervical spine. 

However, there is no research known to this author that establishes scaling of animal 

surrogate thorax and abdomen lateral impact response data to the human adult and 

pediatric thorax and abdomen. 

4.3 – Methods 

In order to provide additional response corridor research data for pediatric ATD 

biofidelity enhancement, development of a scaling relationship using animal surrogate 

test data to apply to the pediatric level is very valuable. For this reason, lateral pendulum 
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impact testing of appropriate age and size torso cadaveric porcine surrogates of  human 

3-year-old, 6-year-old, 10-year-old, and 50th percentile male equivalent were performed 

in order to compare the actual swine test data to already established human response 

corridors scaled from the 50th percentile human male to the pediatric level. Equivalent 

human 3, 6, and 10-year-old as well as the 50th percentile adult male ages were chosen 

based on already established ATDs and human pendulum lateral impact response 

corridors at these age levels.  

Porcine Surrogate Size Determination 

The methodology proposed by Kent et al. (2006), based on a necropsy and 

regression analysis involving specific anthropometry and organ masses, including supine 

seated height, waist to superior sternum dimension, abdominal breadth, abdominal depth, 

kidney mass, liver mass, lung mass, and trunk mass for both pigs and humans was used 

in this study in an attempt to determine appropriate age and size domestic swine (sus 

scrofa domesticus) surrogates, equivalent to a human 3-year-old, 6-year-old, 10-year-old 

and 50th percentile male for the thorax and abdomen regions.  The human 3-year-old, 6-

year-old, and 10-year-old data and similar data for 25 pigs, ages 14 days to 429 days with 

whole body mass ranging from 4 kg to 101 kg, were already collected by Kent et al. (2006) 

in their research and was utilized in the current study. Similar data was then collected in 

the current study for the 50th percentile human male. Data for the 50th percentile human 

male trunk weight was determined using the weight of the upper and lower torso 

assemblies for the Hybrid III 50th percentile male ATD (HIII 50th Male User Manual, 2012).  

Whole body mass and supine seated height for the 50th percentile human male were also 

taken from the Hybrid III 50th percentile male ATD (HIII 50th Male User Manual, 2012).  
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Organ masses for the 50th percentile human male were obtained from Molina and DiMaio 

(2012), while the waist to superior sternum, chest depth, chest breadth, and abdominal 

breadth measurements for the 50th percentile human male were taken from the 

Anthropometry and Biomechanics section of the National Aeronautics and Space 

Administration (NASA) Space Flight Human-Systems Standard Volume 1 (NASA-STD-

3000, 1995). The abdominal depth measurement for the 50th percentile human male was 

taken from Kodak’s Ergonomic Design for People at Work, 2nd Edition (Chengular et al., 

2004). The chest breadth and chest depth measurements for the 3-year-old, 6-year-old, 

and 10-year-old were taken from Reed et al. (2005). Tables 4.3.1 and 4.3.2, below, 

provide the specific human and porcine anthropometry and organ masses obtained and 

used for the current study, respectively. 

Table 4.3.1 Specific Human Anthropometry and Organ Masses 
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Table 4.3.2 Specific Porcine Anthropometry and Organ Masses (Kent et.al. (2006)) 

 

 

 

 

  The data provided in Tables 4.3.1 and 4.3.2 were used in the multiple linear 
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regression model established in Kent et al. (2006) in which two functions defining the 

series of characteristics, listed above, were utilized.  These two functions include 

 i = 1..5 external parameters (f1i) and j = 1..3 organ masses ((f2j).  The values for each of 

the parameters for each pig were defined as a percentage of the human target (3-year-

old, 6-year-old, 10-year-old, and 50th percentile male).  An average percentage of the five 

external parameters were defined as f1avg, and the average percentage of the three organ 

parameters as f2avg. The coefficients for multiple linear regression equations were 

determined using an Add-In statistical analysis software called Analyse-It® for Microsoft 

Excel, version 4.80.2 (Analyse-It Software, Ltd., Leeds, United Kingdom). The multiple 

linear regression equations were then used to relate f1avg  and f2avg to the swine age, (a) 

and mass (m), through: 

                f1avg = g(a,m)       Eq. (1) 

               f2avg = h(a,m)       Eq. (2) 

A second-order polynomial regression equation: 

                y = 0.0017x2 + 0.1812x – 2.5239    Eq. (3) 

developed in the Kent et al. (2006) study which defines the relationship between porcine 

age and whole body mass, as shown in Figure 4.3.1 below, was used as a constraining 

equation, in addition to a second constraining equation: 

      f1avg = f2avg = 100%                                 Eq. (4) 

These equations were used to attempt to determine porcine age and mass that best 

represented the human target, while simultaneously minimizing errors in equations (1) 

and (2).  
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Figure 4.3.1 Relationship between Domestic Pig Age and Whole Body Mass Polynomial 
Regression Constraint Used by Kent et al. (2006) 

The optimization was completed using a non-linear, Quasi-Newton solution scheme 

contained in the Minerr function in MathCAD, version 15 (Mathsoft, Cambridge, MA).  

The multiple linear regression equations, as described above, used to identify the 

age (a) and whole-body mass (m) of the porcine surrogate equivalents (PSE), based on 

Kent et al. (2006) research, most representative as a model of the human 3-year-old, 6-

year-old, 10 year-old, and 50th percentile human male thorax and abdomen were defined 

as: 

 PSE most representative as a model for the human 3-year-old: 

f1avg = g(a,m) = 0.5907 + 0.002711a + 0.02987m = 1           Eq. (5) 

f2avg = h(a,m) = 0.389 + 0.0493m = 1     Eq. (6) 

m = -2.524 + 0.181a + 0.0017a2 = 1                                  Eq. (7) 
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PSE most representative as a model for the human 6-year-old: 

f1avg = g(a,m) = 0.5361 + 0.002655a + 0.01789m = 1   Eq. (8) 

f2avg = h(a,m) = 0.2187 + 0.03255m = 1                Eq. (9) 

m = -2.524 + 0.181a + 0.0017a2 = 1                                   Eq. (10) 

PSE most representative as a model for the human 10-year-old: 

f1avg = g(a,m) = 0.4666 + 0.002349a + 0.01359m = 1   Eq. (11) 

f2avg = h(a,m) = 0.2109 + 0.02778m = 1      Eq. (12) 

m = -2.524 + 0.181a + 0.0017a2 = 1                                Eq. (13) 

PSE most representative as a model for the human 50th percentile male: 

f1avg = g(a,m) = 0.3313 + 0.001735a + 0.007245m = 1   Eq. (14) 

f2avg = h(a,m) = 0.09721 + 0.01493m = 1        Eq. (15) 

m = -2.524 + 0.181a + 0.0017a2 = 1                               Eq. (16) 

The Kent et al. (2006) approach yielded the representative PSE whole-body mass and 

age, which are provided in Figure 4.3.2 and Table 4.3.3, respectively, below. 

Comparison of the Kent et al. (2006) model determined PSE whole-body masses 

presented in Table 4.3.3 to the target age human whole body masses in Table 4.3.1 yields 

a 19.9% lower mass for the 3-year-old PSE relative to the 3-year-old human target mass, 

a 1.4% higher mass for the 6-year-old PSE relative to the 6-year-old human target mass, 

a 17.5%  lower mass for the 10-year-old PSE relative to the 10-year-old human target 

mass, and a 23.2% lower mass for the 50th percentile male porcine equivalent relative to 

the 50th percentile human male target mass. Given the significant underestimation of 

determined PSE mass when compared to the human target masses for all age targets 

other than the 6-year-old equivalent, and the understanding that the Kent et al. (2006) 
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study was focused on the 6-year-old, it appears more work needs to be done to validate 

the Kent et al. (2006) model before using this approach to extrapolate outside of their 

research target 6-year-old equivalent range. In addition, it is acknowledged that swine 

growth can vary significantly with age and  breed depending on how much they are fed 

over a given time span.  Based on this finding, the human whole-body masses provided 

in Table 4.3.1 were the sole target parameter used to determine appropriate PSE for the 

human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male in the current study.  

 

Figure 4.3.2 Domestic Pig Age and Whole Body Mass Polynomial Regression 
Constraint Used by Kent et al. (2006) with Determined Human- PSE 

Table 4.3.3 PSE Whole-Body Mass and Age based on Kent et al. (2006) Model 
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Surrogate female Hampshire/Yorkshire Cross domestic pigs were procured from 

Michigan State University based on the human target weights specified in Table 4.3.1. 

Approval from the Wayne State University’s Institutional Animal Care and Use Committee 

(IACUC) was obtained prior to procurement of the PSE. Table 4.3.4, below, provides 

information regarding the procured PSE, including each individual PSE’s whole-body 

mass and age when studied and percent difference ((+) under, (-) over) compared to the 

target human equivalent whole-body mass. 

  Average age of the procured PSE when studied was 50 days for the 3-year-old 

PSE, 76 days for the 6-year-old PSE, 82 days for the 10-year-old PSE, and 119 days for 

the 50th percentile male PSE.    

Procured PSE were properly housed and cared for by Wayne State University’s 

Division of Laboratory Animal Resources based on an approved IACUC protocol.   

Porcine surrogates were housed until their whole-body mass was as close to the target 

human whole-body mass as practical. Average whole-body mass of the procured PSE 

when studied was 13.6 kg for the 3-year-old, 21.3 kg for the 6-year-old, 30.9 kg for the 

10-year-old, and 73.4 kg for the 50th percentile male. Average percent  of subject PSE 

whole-body mass compared to target human whole-body mass was 3.9% under for the 

3-year-old, 1.43% over for the 6-year-old, 6.75% under for the 10-year-old, and 5.02% 

under for the 50th percentile male. 
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Table 4.3.4 Procured PSE Information 

 

Porcine Surrogate Pendulum Lateral Impact Testing 

A series of lateral impact thorax and abdomen pendulum testing of the appropriate 

whole-body mass cadaveric PSE (3-year-old, 6-year-old, 10-year-old, and 50th percentile 

male) were performed based on the same scaled lateral impact assessment test protocol 

used in ISO/TR 9790 (1999) and van Rantingen (1997) and as was used for the biofidelity 

assessment of the 6-year-old ATDs, discussed previously in Chapter 3.  All porcine 

surrogates were properly disposed of after all testing was completed based on approved 

IACUC protocol. 
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Porcine surrogates tested were euthanized just prior to testing, based on the 

approved IACUC protocol.  They were then instrumented, based on SAE J211-1 standard 

guidelines (2003), with tri-axial piezoresistive accelerometers attached to mount blocks, 

positioned at the PSE 1st thoracic vertebra (T1) spine location, the base of the thoracic 

vertebral spine  (14th thoracic vertebra (T14) spine location for the Hampshire/Yorkshire 

pigs in the current study), and the base of the lumbar vertebral spine location (6th lumbar 

vertebra (L6) spine location for the Hampshire/Yorkshire pigs in the current study). The 

Hampshire/Yorkshire Cross porcine surrogates were viewed under a OEC (Orthopedic 

Equipment Company) 9600 C-Arm fluoroscope (Salt Lake City, Utah) prior to affixing 

accelerometer mount blocks to the specified spinal regions to verify that the breed of pig, 

indeed, had 14 thoracic vertebrae and 6 lumbar vertebrae.  The fluoroscope was then 

used to verify that each of the accelerometer mount blocks were being secured to the 

proper vertebra.  Once proper vertebra locations were verified, accelerometer mount 

blocks were secured to the 50th percentile male PSE vertebrae using stainless steel, 

square drive, coarse threaded deck screws – size #12 x 6-inch at the T1 vertebra location 

and size #12 x 5-inch at the T14 and L6 vertebrae locations. Accelerometer mount blocks 

were secured to the 10-year-old PSE vertebrae using stainless steel, square drive, coarse 

threaded deck screws – size #12 x 5-inch at the T1 vertebra location and size #10 x 4-

inch at the T14 and L6 vertebrae locations. Accelerometer mount blocks were secured to 

the 6-year-old PSE vertebrae using stainless steel, square drive, coarse threaded deck 

screws size #10 x 4-inch at the T1 vertebra location and size #10 x 3-inch coarse thread 

wood screws at the T14 and L6 vertebrae locations. Accelerometer mount blocks were 

secured to the 3-year-old PSE vertebrae using stainless steel, coarse threaded wood 
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screws size #10 x 3 1/2-inch at the T1 vertebra location and size #10 x 3-inch coarse 

thread wood screws at the T14 and L6 vertebrae locations. An example of the verification 

process used for proper screw placement and accelerometer block mount securement 

are provided in Figure 4.3.3 through 4.3.5 for the 50th percentile male PSE T1, T14, and 

L6 locations, respectively. An overall view of the placement of the accelerometer block 

mount positions are shown in Figure 4.3.6 for reference. 

The tri-axial accelerometer mount blocks were equipped with Endevco 7264-

2000TZ (2000 G) piezoresistive accelerometers for lateral accelerations, and with 

Measurement Specialties 64C-0200-360T (200 G) piezoresistive accelerometers for 

longitudinal and vertical accelerations.  T1, T14, and L6 spine tri-axial accelerometer 

mount blocks were attached to the posterior side of each pig spine for accelerometer 

readings consistent with ATD tested locations.    

 

Figure 4.3.3 Fluoroscope Image of accelerometer block mount screw placement and 
securement at the T1 location for the 50th percentile male PSE 
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Figure 4.3.4 Fluoroscope Image of accelerometer block mount screw placement and 
securement at the T14 location for the 50th percentile male PSE 

 

 

Figure 4.3.5 Fluoroscope Image of accelerometer block mount screw placement and 
securement at the L6 location for the 50th percentile PSE 
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Figure 4.3.6 Overall view of the placement of the accelerometer block mounts relative to 
each other for the 50th percentile male PSE 

For the thorax lateral pendulum impact tests, porcine surrogates were 

instrumented to measure rib deflection.  A trans-thoracic rod technique (Rouhana and 

Kroell, 1989) was used in which a 3.5-mm diameter carbon-fiber rod was pushed through 

an incision in the musculature and skin of the impacted side (left side) of the test swine 

specimen between ribs 6 and 7, maneuvered horizontally through its thoracic cavity at 

mid-thorax region, and pushed through an incision in the musculature and skin on the 

opposite, non-impacted side (right side). The positioning of the rod between ribs 6 and 7 

was verified using the fluoroscope. A small aluminum mount bracket was fabricated in 

order to secure the impacted end of the rod and affix it through the use of small zip ties 

to the adjacent ribs (ribs 6 and 7).  Images of the aluminum mount bracket for the trans-

thoracic carbon fiber rod are provided in Figure 4.3.7, and as mounted and attached in a 

swine specimen in Figure 4.3.8, respectively.  
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Figure 4.3.7 Fabricated aluminum mount bracket for rib deflection carbon fiber rod 

The placement of the rod was chosen to allow the rod to lie in the horizontal plane 

(level), in the middle of the impacted thorax region, with the test specimen in a standing 

(upright) position. A photographic target was mounted to the non-impacted end of the rod.  

A fixed length secondary rod with attached photographic target was affixed in a similar 

fashion to ribs 6 and 7 of the non-impacted side of the test specimen with a similar mount 

bracket as in the impacted side in order to be able to track the deflection of the impacted 

ribs relative to the non-impacted ribs (Figure 4.3.9).     

  

Figure 4.3.8 Aluminum mount bracket for rib deflection carbon fiber rod as affixed to 
impacted side (left side) ribs 6 and 7 
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Figure 4.3.9 Aluminum mount bracket for rib deflection fixed rod as affixed to non-
impacted side (right side) ribs 6 and 7 and photographic targets for rib deflection 

(impacted ribs relative to non-impacted ribs) measurement 

Once the carbon fiber rod was placed and secured, the incision on the impacted 

side of the test specimen was closed using super glue.  Photographic targets were also 

placed at T1 and T14 spine locations of the test specimens in order to track the impacted 

rib deflection relative to the spine. Motion of the moveable target (the target secured to 

the impacted rib side of the trans-thoracic rod) relative to the fixed target (the target 

secured to the non-impacted rib side of the test specimen) was tracked via a Redlake 

MotionXtra HG-100k high-speed camera positioned superiorly above the porcine 

surrogate at a frame rate of 2,500 frames per second to measure rib cage deflection as 

a function of time. 

 A stable fixture was fabricated using 80/20 t-slot aluminum structural components 

in order to position the tested swine specimens in a standing, upright orientation at the 

time of impact.  Three separate segments of chain were used in combination with 

carabineer clips and turn buckles to hang the swine test specimens from the fixture at the 
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proper level and orientation relative to the impact pendulum mass.   

For the pendulum impacts in which the pendulum mass impacted the mid-thorax 

region of the tested porcine ribs in a perpendicular impact orientation, the chains were 

passed through the pig’s thick adipose tissue via incisions made bilaterally along the 

spinal region. The superior-most chain was positioned at the test specimen’s cervical 

spine region, passing anterior to the nuchal ligament to provide support in holding up the 

head, neck, and shoulder region of the pig specimen.  The second chain was positioned 

superior to the T14 tri-axial mount block, passing through the thick adipose tissue 

posterior to the spinal column to support the torso of the pig specimen.  The inferior-most 

chain was positioned inferior to the L6 tri-axial mount block, passing through the thick 

adipose tissue posterior to the spinal column to support the rear hind quarter of the pig 

specimen. An inclinometer was used to verify the pig specimen’s spine was level to the 

ground prior to impact. Figure 4.3.10 illustrates a pig test specimen in its pre-impact 

hanging orientation from the stable fixture and in proper position relative to the impacting 

pendulum mass for the thorax pendulum impact testing. 

The swine specimens in the  abdominal pendulum impact test were positioned at 

an oblique 60-degree angle from anterior-posterior, similar to the ATD testing, in 

accordance with testing performed by van Rantingen et al. (1997) and scaled abdominal 

impact response corridors developed in that study based on oblique abdominal impact 

testing proposed in Viano (1989A). The chains were used to position the swine specimen 

through incisions in the adipose tissue located further anterior on the specimen’s left side 

compared to its right side.  Chains were positioned superiorly and inferiorly similar to the 

chain positions in the thoracic pendulum impact test setup. The swine specimen was 
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positioned on the stable fixture such that the impacting face of the pendulum mass was 

positioned symmetrically inferior to the specimen’s rib cage and superiorly to its bony 

pelvis. An inclinometer was used to verify the swine was oriented to the 60 degree 

anterior-posterior position and its spine was level to the ground prior to impact. Figure 

4.3.11 illustrates a swine test specimen in its pre-impact hanging orientation from the 

stable fixture and in proper position relative to the impacting pendulum mass for the 

abdominal pendulum impact testing.  

 

Figure 4.3.10 Thoracic Lateral Impact Test Setup with Swine Specimen in Proper 
Position Relative to Impacting Pendulum Mass 
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Figure 4.3.11 Abdominal Lateral Impact Test Setup with Swine Specimen in Proper 
Position Relative to Impacting Pendulum Mass 

All pendulum impacting masses were fabricated for the current study except for 

the pendulum mass used with the 50th male PSE testing.  The flat-faced, rigid aluminum 

pendulum mass used for the 50th percentile male ATD chest calibration tests 

(49CFR572.36 (1998)) was utilized in the 50th percentile male PSE lateral impact 

pendulum testing.  This pendulum mass had a 152-millimeter (6-inch) diameter impacting 

surface with 12.7-millimeter (0.5-inch) edge radius and weighed 23.4 kilograms, 

consistent with the pendulum mass specified in Irwin et al. (2002) for the 50th percentile 

human male. The flat-faced, rigid, aluminum pendulum mass fabricated for use in the 

lateral pendulum impact testing during the 6-year-old ATD biofidelity testing, discussed in 

Chapter 3, was used for the 6-year-old PSE lateral impact pendulum testing.  The flat-

faced, rigid, aluminum pendulum mass fabricated for the 3-year-old PSE testing had a 

70-millimeter (2.75-inch) diameter impacting surface with a 12.7-millimeter edge radius. 

Total pendulum mass was measured at 1.7 kilograms, consistent with the target 
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pendulum mass specified in Irwin et al. (2002) for the 3-year-old. The flat-faced, rigid, 

aluminum pendulum mass fabricated for the 10-year-old PSE testing was a 121-millimeter 

(4.75-inch) diameter impacting surface with a 12.7-millimeter edge radius. Total 

pendulum mass was 6.5 kilograms which was slightly less (5.6%) than the 6.89 kilogram 

pendulum mass specified as the target pendulum mass in Irwin et al. (2002) for the 10-

year-old.  The impacting pendulum’s face diameters for the 3-year-old and 10-year-old 

pendulum probes were based on scaling ratios relative to the 89-millimeter (3.5-inch) 

pendulum probe used in Q6 lateral calibration testing (Q6 User Manual, 2012) and the 

50th percentile male impactor probe.  Pendulum impact force data was recorded through 

a uniaxial accelerometer mounted on the rear of the pendulum mass.  A redundant 

uniaxial accelerometer was also mounted to the rear of the pendulum mass. Impact force 

was calculated by multiplying the pendulum mass by the recorded acceleration. 

The target pendulum impact speed for the thoracic impact tests was 4.3 m/s, and 

the target pendulum impact speed for the abdominal impact tests was 4.8 m/s.  A test 

table describing the various testing is provided in Table 4.3.5 below. 

An optical sensor speed trap was used to verify pendulum speed just prior to 

impact.  All sensors were connected to a TDAS data acquisition system, and data was 

collected at a sampling rate of 10,000 Hz. In addition to the superior mounted high speed 

camera mentioned previously, the impact events were captured at a rate of 1,000 frames 

per second by a second, lateral view high-speed video camera (Kodak EKTAPRO HG 

Imager, Model 2000). Three replicate runs, each with a different specimen, were 

performed for each of the tests in Table 4.3.5.  
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Table 4.3.5 Pendulum Impact Testing Matrix 

 

Gross dissection of the thoracic region for pigs involved in the thoracic impact tests 

and the abdominal region for the abdominal impact tests were performed to verify there 

were no broken ribs or internal tissue damage from the impacts.   

The data collected was filtered using the SAE J211 standard (2003) and ISO/TR 

9790 (1999) specifications.  Since deflection data was not measured in the 6-year-old 

ATD biofidelity assessment, and therefore also not measured for the swine abdominal 

pendulum impacts, but measured using overall chest deflection in the thoracic pendulum 

impact tests, an effective stiffness normalization methodology was not feasible. The data, 

therefore, was normalized using the effective mass – characteristic length methodology 

described in Mertz (1984) and Irwin et al. (2002).  The data was aligned using the 
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methodology described in Donnelly and Moorhouse (2012), and compared for each body 

region tested (thorax and abdomen).   

Human Response Corridor Target Comparison to Porcine Surrogate Data 

The impact response data collected from the porcine surrogate thorax and 

abdomen lateral impact pendulum tests were assessed against the scaled human thorax 

lateral impact response corridors from pendulum testing published in Irwin et al. (2002) 

and the scaled abdominal oblique impact response corridors from pendulum testing 

suggested in van Rantingen et al. (1997) for the 3-year-old, 6-year-old, 10-year-old, and 

50th percentile human male. Impact response corridor guidelines for the thorax and 

abdomen are provided in Tables 4.3.6 and 4.3.7, respectively, below. 

Table 4.3.6 Human Thorax Impact Response Corridor Guidelines 
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Table 4.3.7 Human Abdomen Impact Response Corridor Guidelines 

 

 Peak mean pendulum impact force at each age level for the tested swine 

specimens was plotted against the peak value of pendulum impact force from the upper 

boundary of the human response corridor at each corresponding age level and used to 

determine if any correlation existed for this parameter with respect to age between pigs 

and humans.  This was performed for both the thoracic and abdominal impact tests.  

Similarly, peak mean T1 acceleration at each age level for the thorax impact tested swine 

specimens was plotted against the peak value of T1 acceleration from the human 

response corridor upper boundary at each corresponding age level.  This analysis was 

performed to determine if any correlation existed for T1 acceleration with respect to age 

between swine and humans. A Pearson’s Correlation (r value) was calculated with 

respect to the above plotted comparison data in order to determine the strength of any 

linear correlation between the pigs test data relative to age and the human scaled impact 

response corridors.  The closer the r value to + 1, the stronger the correlation between 
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the data analyzed. In addition, an ANOVA (analysis of variance or p-value) test was 

performed on the data to determine if there is any statistical significance between human 

and swine impact response data relative to age.  For the current study, a p-value less 

than 0.05 was considered statistically significant. 

4.4 – Results 

Gross dissection of the thoracic and abdominal regions for pigs involved in the 

thoracic and abdominal impact tests, respectively, were performed to verify there were 

no broken ribs or internal tissue damage from the impacts.  Ribs 6 and 7 on the impacted 

side of the 50th percentile male PSE used in Test 37 were the only ribs determined to 

have fractured during all testing performed.  No abdominal region internal bleeding or 

contusions were identified in any of the testing.   

Pendulum impact thorax response data for the PSE tested were compared to the 

response requirements described in the ISO/TR9790 Technical Report, as scaled to the 

3-year-old, 6-year-old, 10-year-old human from the 50th percentile human male in Irwin et 

al. (2002).  Figures 4.4.1 and 4.4.2, respectively, illustrate the comparison of the 3-year-

old PSE tested pendulum thorax impact force and T1 level accelerations with respect to 

time compared to the human scaled thorax response corridors for this age level.  Figures 

4.4.3 and 4.4.4, respectively, demonstrate the comparison of the 6-year-old PSE tested 

pendulum thorax impact force and T1 level accelerations with respect to time compared 

to the human scaled thorax response corridors for this age level. Figures 4.4.5 and 4.4.6, 

respectively, show the comparison of the 10-year-old PSE tested pendulum thorax impact 

force and T1 level accelerations with respect to time compared to the human scaled 

thorax response corridors for this age level, and Figures 4.4.7 and 4.4.8, respectively, 



www.manaraa.com

112 
 

 
 

illustrate the comparison of the 50th male PSE tested pendulum thorax impact force and 

T1 level accelerations with respect to time compared to the human thorax response 

corridors.  

 

Figure 4.4.1 3-Year-Old PSE Pendulum Thorax Impact Force v Time Compared to ISO 
Scaled Human Thorax Impact Response Corridor 

 

Figure 4.4.2 3-Year-Old PSE Pendulum Thorax Impact T1 Acceleration v Time 
Compared to ISO scaled Human Thorax Impact Response Corridor 
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Figure 4.4.3 6-Year-Old PSE Pendulum Thorax Impact Force v Time Compared to ISO 
scaled Human Thorax Impact Response Corridor 

 

 

Figure 4.4.4 6-Year-Old PSE Pendulum Thorax Impact T1 Acceleration v Time 
Compared to ISO scaled Human Thorax Impact Response Corridor 
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Figure 4.4.5 10-Year-Old PSE Pendulum Thorax Impact Force v Time Compared to ISO 
scaled Human Thorax Impact Response Corridor 

 

 

Figure 4.4.6 10-Year-Old PSE Pendulum Thorax Impact T1 Acceleration v Time 
Compared to ISO scaled Human Thorax Impact Response Corridor 
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Figure 4.4.7 50th Male PSE Pendulum Thorax Impact Force v Time Compared to ISO 
scaled Human Thorax Impact Response Corridor 

 

 

Figure 4.4.8 50th Male PSE Pendulum Thorax Impact T1 Acceleration v Time Compared 
to ISO scaled Human Thorax Impact Response Corridor 

Pendulum impact abdominal response data for the PSE tested were compared to 

the abdominal response corridors suggested in van Ratingen et al. (1997), as scaled to 

the 3-year-old, 6-year-old, 10-year-old human from the 50th percentile human male.  
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Figures 4.4.9 through 4.4.12 illustrate the comparison of the 3-year-old, 6-year-old, 10-

year-old, and 50th Male PSE tested pendulum abdominal impact force relative to time 

compared to the human scaled abdominal impact response corridors, respectively.   

Based on the plotted data, a linear trend in PSE thoracic peak mean pendulum 

impact force compared to corresponding peak value response corridor upper boundary 

values was observed with increase in age, as illustrated in Figure 4.4.13. The Pearson’s 

correlation R-value for this data was calculated to be 0.9994, which indicates a 

significantly strong linear correlation between the peak mean porcine thoracic pendulum 

impact force to scaled human peak impact response corridor force relative to age.  In 

addition, the ANOVA p-value for the above data was calculated to be 0.0005, and 

therefore shows a statistical significance in human to porcine thoracic impact force 

response data relative to age.   

 

Figure 4.4.9 3-Year-Old PSE Pendulum Abdominal Impact Force v Time Compared to 
van Rantingen scaled Human Abdominal Impact Response Corridor 
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Figure 4.4.10 6-Year-Old PSE Pendulum Abdominal Impact Force v Time Compared to 
van Rantingen scaled Human Abdominal Impact Response Corridor 

 

 

Figure 4.4.11 10-Year-Old PSE Pendulum Abdominal Impact Force v Time Compared 
to van Rantingen scaled Human Abdominal Impact Response Corridor 
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Figure 4.4.12 50th Male PSE Pendulum Abdominal Impact Force v Time Compared to 
van Rantingen scaled Human Abdominal Impact Response Corridor 

 

 

Figure 4.4.13 Correlation of Peak Mean PSE Thoracic Pendulum Impact Force to ISO 
Response Corridor Upper Boundary Values at Each Age Level  

Based on the plotted data, a linear trend in PSE abdominal peak mean pendulum 

impact force compared to corresponding scaled human impact response corridor upper 
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boundary values is observed with increase in age, as shown in Figure 4.4.14, below. The 

Pearson’s correlation R-value for this data was calculated to be 0.9964, which 

corresponds to a strong linear correlation between the peak mean porcine abdominal 

pendulum impact force to scaled human peak impact response corridor force relative to 

age.  In addition, the ANOVA p-value for the data was calculated to be 0.0036, and 

therefore shows a statistical significance in human to porcine abdominal impact force 

response data relative to age.   

 

Figure 4.4.14 Correlation of Peak Mean PSE Abdominal Pendulum Impact Force to van 
Rantingen Response Corridor Upper Boundary Values at Each Age Level  

Based on the plotted data, a decreasing second-order polynomial trend relative to 

age for the pendulum impact thoracic T1 accelerations compared to the corresponding 

scaled human upper response corridor peak values, as illustrated in Figure 4.4.15, below. 

The Pearson’s correlation R-value for this data was calculated to be 0.4960, which 

corresponds to a weak linear correlation between the peak mean PSE thoracic pendulum 

impact T1 accelerations to scaled human peak impact response corridor T1 accelerations 
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relative to age.  In addition, the ANOVA p-value for the data was calculated to be 0.5040, 

and therefore shows no statistical significance in human to porcine thoracic T1 impact 

acceleration response data relative to age.   

 

Figure 4.4.15 Correlation of PSE Peak Mean T1 Acceleration to ISO Response Corridor 
Upper Boundary Values at Each Age Level  

4.5 – Discussion 

 Peak pendulum impact thorax T1 accelerations for all PSE tested, at all age 

equivalent levels were considerably higher in value than the corresponding scaled human 

upper response corridor boundaries.  Peak PSE thorax T1 accelerations were 2.0 times 

greater at the 3-year-old age level, 2.3 times greater at the 6-year-old age level, 1.8 times 

greater at the 10-year-old age level, and 2.1 times greater at the 50th male age level than 

the human ISO upper boundary response corridors. Although magnitudes for the T1 

accelerations were greater than the corresponding scaled human impact response 

corridors, peak accelerations appear to be consistent in time with the corresponding 

scaled human impact response corridor peak accelerations.  In addition, thorax impact 
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pulse duration for all age level PSE T1 acceleration data is shorter than the corresponding 

human impact response corridors, and PSE thorax pendulum impact force pulse 

durations were less than the human impact response corridors by approximately 10 msec. 

Peak PSE thoracic pendulum impact force magnitudes essentially fell within the ISO 

scaled human impact response corridors for all ages.   

The shorter impact pulse durations observed in the swine testing compared to the 

ISO human impact response corridors are due to the stiffer swine thorax compared to the 

human thorax at all age levels studied. Stiffness is how much an object will deform due 

to an applied force. Impact duration is a function of how long the impact force is applied 

before the two objects reach a common velocity and separate.  The impact duration in 

this study, with a rigid impact pendulum probe, will be shorter if the struck object is more 

rigid and doesn’t deform much, or longer if the struck object is yielding.  Acceleration is 

the change in velocity over the change in time (impact pulse duration), and is, therefore, 

inversely proportional to the pulse duration.  A shorter pulse duration will result in a higher 

acceleration whereas a longer pulse duration will result in a lower acceleration.  Since 

force-deflection is not one of the included ISO impact response corridors, data plots are 

not provided and compared in this chapter but will be provided and discussed later in 

Chapter 6.   

Peak PSE abdomen pendulum impact force magnitudes essentially fell within the 

ISO scaled human impact response corridors for all ages. The PSE abdominal pendulum 

impact force pulse durations tended to be within or slightly longer than the human impact 

response corridors. 

The impulse, or duration over which an impacting force acts, can provide insight 
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into stiffness and relative response of the struck object, assuming the striking object is 

rigid and unyielding.  Impulse response calculations were performed in the current study 

for the PSE force versus time impact data as well as for the corresponding average 

human impact response corridors for both the thorax and abdominal impacts.  The 

corresponding PSE and human impulse response data was compared.  Figure 4.5.1, 

below, shows the thorax impulse response data comparison for the PSE and human at 

all studied age levels.  Figure 4.5.2 provides the abdominal impulse response data 

comparison for the PSE and humans at all age levels studied. 

It can be seen from the thorax impulse response data graphs provided in Figure 

4.5.1, above, that for all ages, impulse response of the swine is much higher in magnitude 

shorter in duration, and passes through zero sooner than the human impulse response. 

The time location where the impulse response curve passes through zero is where the 

maximum impact force occurs and a common velocity between the two impacting objects 

is achieved. Note that the more compliant porcine abdomen impulse response data in 

Figure 4.5.2 does not pass through zero until much later in time compared to the thorax. 

The porcine abdomen impact response data, is however, much higher in magnitude but 

typically longer in duration, passing through zero later in time than the human abdominal 

impulse response data. The impulse response data shows that the porcine thorax is stiffer 

than the human thorax, but the porcine abdomen tends to be as or slightly more compliant 

than the human abdomen. Based on the statistical analysis performed, there is a 

significant linear correlation with respect to peak impact pendulum force and age for 

porcine thoracic and abdominal test data compared to the peak ISO scaled human impact 

response corridors.  The time (pulse) duration of the pendulum impact force is, however, 
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roughly 10 msec shorter for the PSE response data compared to the corresponding 

human thoracic impact response corridors.  As for the thoracic T1 acceleration, no 

significant correlation was found with respect to the response data of PSE when 

compared to scaled human T1 acceleration response corridors. 

  

 

Figure 4.5.1 Thorax Impulse Response Data Comparison for the PSE and Human at all 
Studied Age Levels – 3-Year-Old (top left), 6-Year-Old (top right), 10-Year-Old (bottom 

left), 50th Male (bottom right) 
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Figure 4.5.2 Abdominal Impulse Response Data Comparison for the PSE and Human at 
all Studied Age Levels – 3-Year-Old (top left), 6-Year-Old (top right), 10-Year-Old 

(bottom left), 50th Male (bottom right) 

Viano et al. (1989B) performed lateral impact pendulum tests at various impacts 

speeds, using a 23.4 kg flat-faced pendulum impact mass, on unembalmed male and 

female human PMHS ranging in age from 29 to 75.  Impacts were performed at the chest 

(including an impact speed of 4.3 m/s), abdomen (including an impact speed of 4.8 m/s), 

and pelvis levels.  Figure 4.5.3, below, shows a comparison of the digitized pendulum 

impact force versus time thoracic data from the human PMHS in the Viano et al. (1989B) 

study with ISO human impact response corridors (top) compared directly to the current 

study 50th male PSE thoracic pendulum impact response data with corresponding ISO 

human impact response corridors (bottom). 
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Figure 4.5.3 Comparison of Lateral Pendulum to Thoracic Impact Tests of Human 
PMHS (Viano et al. (1989B)) (top) to 50th Male PSE (4.3 m/s impact speed) (bottom) 

This comparison clearly shows that the human PMHS data, except for test 

specimen #40, would fall within the 50th male human impact response corridors for both 

force magnitude and pulse duration.  The 50th male PSE data is noticeably shorter in 
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pulse duration by roughly 10 msec and only slightly greater in force magnitude than the 

human data, which is consistent with the ISO impact response corridors. 

Viano et al. (1989C) further performed lateral impact pendulum tests on 

anesthetized full-grown pigs at various impact speeds, including an impact speed of 4.3 

m/s, using a 23.4 kg flat-faced pendulum impact mass, with the swine rotated 30-degrees 

so the point of impact of the pendulum was lateral on the thorax and upper abdomen.  

The lateral pendulum impact force versus time data for the Viano et al. (1989C) swine at 

the 4.3 m/s impact speed is provided in Figure 4.5.4, below, for reference. 

 

Figure 4.5.4 Lateral Pendulum to Thoracic/Abdominal Impact Tests of Full-Grown Pigs 
rotated 30 degrees (Viano et al. (1989C)) (4.3 m/s impact speed) 

The pulse duration and pulse response shape of the porcine pendulum impact 

force response data provided in Figure 4.5.4 is similar to what was observed in the current 

study’s thoracic lateral impact testing for the 50th male PSE (see bottom figure – Figure 

4.5.3). The peak magnitude observed in the current study’s thoracic impact pendulum 



www.manaraa.com

127 
 

 
 

force data, however, is on the order of 1.5 times greater than what is observed in the 

Viano et al. (1989C) study (Figure 4.5.4 above).  The magnitude difference in the porcine 

data is most probably due to the nature and location of the pendulum impact in the two 

studies.  The current study positioned the thorax pendulum impact swine specimens in a 

standing, quadrupedal orientation, with the spine horizontal (parallel to the floor), and the 

impacting mass centered on the mid thorax region at the 6th and 7th rib position.  The 

Viano et al. (1989C) study, on the other hand, positioned the swine specimens in a 30-

degree rotated orientation so the point of impact of the pendulum was lateral on the thorax 

and upper abdomen.  This overlap of the thorax and abdomen would tend to be more 

compliant in response, therefore resulting in a lower force compared to the pure thoracic 

structure impacted in the current study.  It should be noted that Viano et al. (1989C) 

documented the reason for the 30-degree rotated impact orientation of the specimens 

was due to observed swine body deformation coupling with whole body rotation reaching 

22-degrees at the time of peak compression which lead to an inaccurate body 

deformation analysis.  Superior view high speed video of the thoracic impacts performed 

in the current study were reviewed and revealed no such whole body rotation prior to 

peak impact force.  Again, this is most likely due to the difference in pendulum impact 

location on the swine specimens in the two studies. 

Comparison of the current study’s lateral abdominal impact data for the 50th male 

PSE to the digitized human PMHS abdomen impact data presented in the Viano et al. 

(1989B) study was also performed (Figure 4.5.5). The human PMHS data (top – Figure 

4.5.5) and the 50th male PSE data (bottom figure) essentially fall within the human ISO 

impact response corridors in terms of force magnitude and pulse duration.  The human 
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PMHS data and the 50th male PSE are similar in impact pulse shape, peak force 

magnitude, and pulse duration. 

The overall findings of the current study are consistent with previous human and 

swine lateral pendulum impact testing. Porcine thoracic and abdominal impact response 

data for all equivalent age levels studied tend to follow the scaled human ISO and van 

Rantingen response corridors, respectively.  The shorter thoracic pendulum impact force 

pulse duration, however, is observed in PSE relative to the human ISO impact response 

corridors for all equivalent ages studied. In addition, these studies as well as the current 

study, showed the adult PSE  thorax tends to develop higher resistive forces sooner and 

doesn’t compress as much as the adult human thorax in lateral impact. This is most likely 

due to the difference in shape of the swine and human thorax, with the swine rib cages 

tending to be thinner in breadth and longer in depth than the human rib cage (Sack, 1982).  

This can have an effect on the magnitude of lateral forces and accelerations documented 

in the current study. Adult human and porcine abdominal pendulum force impact data 

tend to be similar in pulse shape, magnitude, and pulse duration. 

Since abdominal deflection was not measured in the 6-year-old ATD tests, it was 

not measured for the swine in the current study; however, analysis of the porcine 

abdominal force-deflection properties would be valuable in the development of ATD 

biofidelity design and should be considered in future studies.   
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Figure 4.5.5 Comparison of Lateral Pendulum to Abdomen Impact Tests of Human 
PMHS (Viano et al. (1989B)) to 50th Male PSE (4.8 m/s impact speed) 
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 This study has some important limitations.  For instance, although the results were 

fairly consistent, only three porcine impact tests were conducted for each age level 

analyzed.  Additional testing may be necessary to further quantify any significant 

variability relative to the presented data.  

Weight appears to be an appropriate factor in determining suitable porcine 

surrogates for human test comparison. However, based on the results of the current 

study, specifically the fact that the swine torso is stiffer than the human, it is clearly not 

the only factor.  More research needs to be performed to determine if other factors, such 

as torso stiffness or even swine breed, in combination with weight, can be established for 

the determination of more suitable swine surrogate models for human pediatric level side 

impact research. Based on the findings in the current study, further investigation is 

needed regarding the use of age as a secondary determining factor. 

In order to impact the pigs in their upright standing position, a fixture was fabricated 

to suspend the pigs from chains passed through the swine specimen’s dorsal adipose 

tissue.  Multiple impact tests were performed to verify that the chains suspending the 

swine did not have any significant effect on the response data prior to maximum impact, 

either from the added mass of the chains or motion limitations during impact.  The 

placement of the three suspension chains and their locations relative to the 

accelerometers was consistent from pig to pig throughout testing, based on their size.  

Any significant variation in chain placement could potentially have some effect on swine 

spinal bending during impact, and therefore, force and acceleration response data.   

Any animal model has accompanying limitations in terms of its ability to represent 

human response. Although relative position of organs are similar, size, location, and 
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geometry of organs are not entirely comparable from pigs to humans.  There are other 

certain anatomical differences between pigs and humans that can have an effect on the 

limitations of the current study’s findings. For instance, pigs are quadrupedal compared 

to humans, who are bipedal. As quadrupedal mammals, porcine thoracic and abdominal 

organs are forced anteriorly (ventrally) due to gravity, whereas a human’s organs are 

forced inferiorly.  It should be noted that research performed by Pope et al. (1979) 

illustrated that influences due to unnatural positioning of the swine could affect impact 

response results to the thorax and abdomen. Therefore, it was decided to position the 

pigs in their natural standing position for current study testing and evaluation. 

This author is not aware of any current or past thoracic or abdominal lateral impact 

research performed on human child PMHS.  The only known human child PMHS research 

to date was performed in an anterior-posterior impact direction to the thoracic or 

abdominal region and was performed by Kent et al. (2006, 2009, 2011) and Ouyang et 

al. (2006).  Ramanchandra et al. (2016) recently performed similar anterior-posterior 

loading to the abdomen with a transverse oriented seatbelt on adult human PMHS. 

Ouyang et al. (2006) performed pneumatic ram loading anterior-posterior to the 

chest of child PMHS ages 2 to 12. A 2.5 kg impacting mass was used for child PMHS 

ages 2 to 4, and a 3.5 kg impacting mass was used for child PMHS ages 5 to 12. Impact 

speeds ranged from 5.9 to 6.4 m/s and resulted in peak impact forces ranging from 0.74 

to 1.1 kN. Peak thoracic impact force magnitudes for the 3 to 10-year-old PSE in the 

current study range from 0.45 to 1.5 kN. The Ouyang et al. (2006) research appears, at 

least in force magnitude, to be consistent with the magnitude ranges of the current study 

3 to 10-year-old PSE as well as the scaled 3 to 10-year-old thoracic impact response 



www.manaraa.com

132 
 

 
 

corridors with respect to human lateral impact from Irwin et al. (2002).   

Kent et al. (2006, 2009, 2011) showed that quasi-static and dynamic anterior-

posterior loading to the abdomen by a transversely oriented seatbelt to their established 

6-year-old PSE model abdomen, based on age and weight, was similar in response to 

the 6-year-old human PMHS abdomen. Belt forces at dynamic loading rates between 1.5 

m/s and 7.8 m/s were found to be between 4 to 5 kN.  This study also showed that load 

varied as a function of belt depth penetration into the abdomen and load rate.   

Ramanchandra et al. (2016) showed abdominal adult PMHS tested with seatbelt load 

rates ranging from 3.4 to 5.2 m/s and resulting in peak belt forces of 2.86 to 4.76 kN.  The 

Kent et al. (2006, 2009, 2011) and Ramachandra et al. (2016) studies with respect to 

abdominal force magnitude appear to be greater than what was observed in the PSE 

abdominal pendulum impact force tests in the current study as well as the scaled 3 to 10-

year-old abdomen impact response corridors suggested by van Rantingen et al. (1997) 

with respect to human lateral impact testing.   

4.6 – Conclusions 

The primary contributions of this study were to establish age equivalent PSE for 

the human 3, 6, 10-year-old, and the 50th percentile male; test the thoracic and abdominal 

regions of the PSE in lateral pendulum impact testing; and compare the results of the 

PSE lateral pendulum impact testing to established adult human and scaled child lateral 

impact response corridors for the thorax and abdomen. 

The overall findings of the current study confirm that lateral impact force response 

of the thorax and abdomen of appropriate weight porcine surrogates established for 

human-equivalent-age 3-year-old, 6-year-old, 10-year-old, and 50th adult male are 
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consistent with the ISO human scaled lateral impact response corridors presented in Irwin 

et al. (2002) and van Rantingen et al (1997).  Peak PSE thoracic and abdomen pendulum 

impact force magnitudes essentially fell within the ISO human impact response corridors 

for all ages.  PSE thorax pendulum impact force pulse durations were shorter than the 

human impact response corridors by approximately 10 msec, whereas the PSE 

abdominal pendulum impact force pulse durations tended to be within or slightly longer 

than the human impact response corridors.  

Based on the statistical analysis performed, there is a significant linear correlation 

with respect to peak impact pendulum force and age for porcine thoracic and abdominal 

test data compared to the ISO human scaled impact response corridors.  As for the 

thoracic T1 acceleration, no significant correlation was found with respect to the thoracic 

T1 acceleration response data of the pigs when compared to human scaled T1 

acceleration response corridors. 

The results of the current study confirm that the current ISO scaling laws are 

applicable and correspond well with PSE ages 3 to adult lateral impact force versus time 

data at the thorax and abdominal regions. Due to the scarcity of child PMHS data for 

research in occupant safety in vehicle crashes, animal testing, and particularly porcine 

thorax and abdomen testing,  provides the most applicable and definitive surrogate model 

to human force response at all equivalent age levels. Porcine surrogate testing in lateral 

impact can prove to be a powerful research means with regard to vehicle safety. 

   Further investigation is needed to better understand and interpret the higher 

magnitude accelerations experienced at T1 for all age PSE compared to scaled human 

impact response corridors in order to be able to incorporate this data into research 
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capabilities as well. It appears, from the current study, that T1 acceleration data during 

thorax impact testing is roughly two times greater in magnitude and slightly less in time 

pulse duration than corresponding human scaled corridors at all age levels tested.   
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CHAPTER 5 – ESTABLISHMENT OF SWINE RIB ELASTIC BENDING MODULUS 
AND COMPARISON TO HUMAN EQUIVALENTS (SPECIFIC AIMS 3-4) 

5.1 – A Review of Experimental Studies for the Established Rib Elastic Bending 

Modulus Using both Human and Animal Surrogates 

Child ATDs have been developed over the years based principally by scaling human 

adult male PMHS test data down to the size of the child.  Various scaling methods have 

been utilized to factor in differences in child versus adult geometry, material properties, or a 

combination of the two.  However, it is a challenge to scale adult tissue properties to 

pediatric properties because the majority, if not all of the scaling techniques used have 

never been fully validated against pediatric tissue or cadaver tests (Franklyn, 2007).  

Research continues in order to establish up-to-date pediatric, adult, and animal surrogate 

geometry and material properties to aid in validating scaling techniques.  One material 

property of interest in lateral impacts is rib elastic bending modulus. 

Berteau et al. (2012) performed a study to provide elastic property values as a 

function of human growth for cortical bone by analyzing fibula long bone surgical waste 

(bone transplantation).  Eighteen bone samples, from children ages 4 to 16, were tested 

to obtain young’s modulus of elasticity data through three-point microbending.  

Specimens were loaded under displacement control at a rate of 0.1 mm/min until they 

failed. An average young’s modulus of elasticity of 9.1 GPa was found for the child long 

bone samples tested.  This finding is more than the 6.6 GPa elastic modulus used by 

Irwin and Mertz (1997) for their human response corridor scaling technique which was 

based on pediatric parietal bone test data. 

 Agnew et al. (2013) researched 44 pediatric rib specimens obtained during 

autopsy from 12 specimens, ages 5 months to 9 years old, to characterize the elastic 
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properties of human pediatric ribs.  The pediatric rib segments were subjected to three-

point bending tests simply supported and loaded at their central points. Specimens were 

loaded under displacement control at a quasi-static rate of 2.5 mm/min until they passed 

the point of gross failure. An average young’s modulus of elasticity of 4.86 GPa was found 

for the pediatric rib segments tested.  This finding is less than the 6.6 GPa elastic modulus 

used by Irwin and Mertz (1997).  A young’s modulus of elasticity of 3.4 GPa and 8.0 GPa 

were measured for the two 3-year-old specimens, 5.65 GPa was measured for the 6-

year-old specimen, and 9.8 GPa was measured for the 9-year-old specimen.  Rib bending 

properties from the Agnew et al. (2013) study were compared in the study to other 

pediatric and adult rib bending property experimental studies known at the time and are 

provided in Table 5.1.1, below.  The analysis of adult rib properties by Yoganandan and 

Pintar (1998) produced the closest test comparison, in terms of rate and test type (3-point 

bending), to the Agnew et al. (2013) rib property study, resulting in an average young’s 

modulus of elasticity for the adult rib of approximately 2.32 GPa. 

Table 5.1.1 Agnew et al. (2013) Pediatric Rib Bending Comparative Values for 
Measured Properties from Other Relevant Three-Point Bending Tests on Anterior or 

Lateral Rib Sections or Coupons 

 

 Bradley et al. (2013) analyzed the 6th ribs of one-day-old domestic pig models (Sus 

scrofa) in three test scenarios (dried, fresh, frozen-then-thawed) to study rib fracture 
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mechanics and the force limit at which fracture occurs in peri- and post-mortem states.  A 

500 N load cell was used in combination with a 10 mm/min cross-head speed and 10 mm 

loading span width with 30 mm support span setup for 4-point force/displacement 

bending. Since conventional 4-point bending testing uses specimens of beam shapes 

having rectangular cross-sections, the ribs strength and modulus results of this study 

were converted to be representative of the ribs’ more circular/elliptical shape.  The mean 

elastic bending modulus was found to be 8.41 GPa for fresh rib specimens, 20.34 GPa 

for dried rib specimens, and 8.99 GPa for thawed rib specimens. 

 Keiser et al. (2013) analyzed the 5th ribs of freshly slaughtered one-year-old male 

domestic pig models (Sus scrofa) with hanging weights of 85 to 115 kg in two test 

scenarios (fresh ribs with retained periosteum and dried ribs) to study rib fracture 

mechanics in bending and the force limit at which fracture occurs in peri- and post-mortem 

states.  A 50 kN load cell was used in combination with a 10 mm/min cross-head speed 

and 20 mm loading span width with 100 mm support span setup for 4-point 

force/displacement bending. Rib strength and modulus results of this study were 

converted to be representative of the ribs’ more circular/elliptical shape.  The effective 

elastic bending modulus was found to be 4.7 GPa for fresh rib specimens and 4.92 GPa 

for the dried rib specimens. 

Large variations in biomechanical response were observed in the reported 

literature, particularly with respect to rib elastic modulus. Load rates, sample preparation, 

sample size, and test methods (3-point bending versus 4-point bending) used in studying 

human pediatric and adult rib mechanical properties, including elastic bending modulus) 

compared to pig rib fracture models are different, and therefore, it is difficult to compare 
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them directly here.  

5.2 – A Brief Review of Pig and Human Skeletal Maturation 

Reiland (1978) documented the skeletal development and growth rate of healthy 

domestic pigs in the form of weight curves, longitudinal bone growth, closure of growth 

plates, and development of teeth.  Domestic swine sexual maturation has been found to 

occur at approximately 5 to 6 months of age based on: (1) an inflection point of the weight 

curve with respect to age, (2) the occurrence of sperm in male pig ejaculate, and (3) the 

timeframe when female pigs come into heat (Reiland, 1978).  The weight versus age 

curve established in Reiland (1978) is similar the weight versus age curve established in 

Kent et al. (2006). Swine growth plate closure, provided in Table 5.2.1 below, was 

determined based on radiographic and anatomic observations (Reiland, 1978). Size and 

shape of domestic swine have evolved over time due to the desire of the farmer to 

establish more economic characteristics such as rapid growth, low feed consumption, low 

fat composition, and larger muscle volume (Reiland, 1978).  This may make it difficult to 

establish skeletal growth and maturation characteristics as a function of age and weight 

for swine test subjects.  
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Table 5.2.1 Reiland (1978) Swine Growth Plate Closure Ages 

 

 Scheuer and Black (2004) documented the skeletal development and growth of 

the healthy human juvenile skeleton.  Human male and female sexual maturation has 

been found to occur at approximately 10 to 16 years of age (Scheuer and Black, 2004).  

Human juvenile growth plate closure at various body regions, is provided in Table 5.2.2 

below. 

Table 5.2.2 Scheuer and Black (2004) Human Juvenile Growth Plate Closure Ages 
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No known correlation has been established with respect to rib elastic bending 

modulus as a function of age of swine rib material properties compared to human rib 

material properties. In order to develop a scaling technique using animal surrogate test 

data relative to the human pediatric level, particularly in side impact, further scaling 

parameters in addition to the ones already determined above need to be established.   

5.3 – Methods 

Porcine Surrogate Rib Section Bending Elastic Modulus 

Quantification of rib section elastic bending modulus for the determined 3-year-old, 

6-year-old, 10-year-old, and 50th percentile adult human male PSE was performed in 

order to establish test scaling parameters for the porcine thorax and abdomen as provided 

in Mertz (1984), Irwin and Mertz (1997) and Irwin et al. (2002) for the human. Gross 

dissection was performed of the non-struck whole rib 6-7 segments of the thoracic 

pendulum impacted swine specimens, post testing, allowing for a one-to-one 

correspondence with the struck side response and material property data.  The rib 

sections were wrapped in saline gauze, placed in a zip lock bag, and stored in a freezer 

at -20 degrees C until testing.   

The methods for testing, described herein, are similar to those utilized in the rib 

material property research performed by Agnew et al. (2013) and Stitzel et al. (2003). 

Dynamic three-point bending as per ASTM Standard D790-00 (ASTM International, 2010) 

was used to measure the material properties of the rib segments where the ribs were 

simply supported and a load applied by an actuator through its central point. An adjustable 

aluminum 3-point bending fixture was fabricated to accommodate various length rib 

specimens.  All contact surfaces on the fixture were rounded to a diameter of 10 mm (0.4 
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in) per the ASTM D790 standard (Standard Test Methods for Flexural Properties of 

Unreinforced and Reinforced Plastics and Electrical Insulating Materials) in order to 

confirm that supports and the impacting surface of the actuator were adequately rounded 

to reduce stress concentrations during testing.   

For testing, rib sections, previously harvested and stored as discussed above, 

were removed from the freezer and allowed to thaw to room temperature.  All rib 

specimens were kept moist throughout testing.  All possible soft tissue, excluding the 

periosteum, was detached from the rib segment specimens.   

Each rib specimen was measured from the notch on the rib just lateral of the 

costochondral juncture to the start of the acute angle of the rib near its attachment to the 

spine (see Figure 5.3.1).  Half of this measured distance was used to determine the 

actuator load location which was consistent with the struck side rib region impacted during 

the pendulum impact testing.  Ribs were loaded with the actuator on the convex side of 

the rib, consistent with lateral impact to the rib cage.  The rib cross section was measured 

at this actuator load placement location using digital calipers and measuring the cross-

section in the direction of the applied load.   

Span lengths for tested rib segments were determined such that the ratio of the rib 

length (beam length) to rib cross-section was suitable for simple bending analysis (span 

length/cross-section depth>5) such that maximum shear stress was negligible (Boresi 

and Schmidt (2003)).  This was achieved by taking the measured distance from the notch 

on the rib just lateral of the costochondral juncture to the start of the acute angle of the 

rib near its attachment to the spine and subtracting 10 percent of that length from either 

side (per ASTM D790 standard).  This method accomplished the requirement of negligible 
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shear stress loads and established a consistent method for determining span length 

across various sized rib specimens.   This span length determination method was chosen 

to provide the widest possible span length for each tested rib in order to assure the best 

opportunity for rib response similar to the pendulum impact testing. 

The top portion of the 3-point bending fixture was securely attached to an Instron 

Testing System (Norwood, MA) and was used to apply a 5 N pre-load through the superior 

actuator to the convex rib segment in order to guarantee the rib specimen was secure 

prior to testing. Rib segments were tested quasi-statically with a controlled actuator 

displacement rate of 2.5 mm/min, similar to the displacement rate used in Agnew et al. 

(2013) as well as Yoganandan and Pintar (1998).  Displacement was allowed past the 

point of rib fracture.  The force of the superior actuator was recorded using a load cell.  

The force and displacement data for the loading superior actuator was recorded by the 

Instron Testing System at a sampling rate of 2,000 Hz for each rib segment tested.  A 

sample of the setup for each rib section and rib loaded to fracture are shown in Figure 

5.3.1, below. 

Prior to rib bending testing, the ribs segments were CT scanned using a Siemens 

Inveon Hybrid Micro-PET/CT scanner. Rib specimens were scanned over a 4-cm length, 

approximately 2 cm either side of the actuator load location. CT scans were collected at 

0.04 mm intervals using a scanning resolution of 3072 x 2048.  The CT scan nearest the 

actuator load location for each rib tested was imported into ImageJ (Rasband (1997-

2014)) software to determine total subperiosteal cross-sectional area (Tt. Ar.), area 

moments of inertia (I), and section moduli (Z) by utilizing the MomentMacro plug-in (Ruff 

(2015)).  Cortical bone cross-sectional area (Ct. Ar.), was determined by subtracting the 
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sub-endosteal cross-sectional area from the total subperiosteal cross-sectional area.  A 

CT scan of one of the tested ribs is provided in Figure 5.3.2 below. 

 

 

 

 

Figure 5.3.1 Rib Specimen 3-Point Bending Fixture, Setup, and Load to Fracture 
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Figure 5.3.2 Rib CT Scan Used to Determine Cross-Sectional Properties 

Material properties of the PSE rib segments tested were calculated using a series 

of simple beam bending analysis equations.  Bending moment can be determined using 

the reaction force from one of the two outer simple rib segment mount supports and one-

half the rib segment span length (L/2).  The equation to calculate the bending moment is 

simply (Eq. 1): 

4

FL
M      (1) 

Where: 

M = Bending Moment 

F = Applied Actuator Force 

L = Span Length 

Maximum displacement of the rib segment can be characterized based on a simple 
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point-load at the center of a beam simply-supported at both ends as (Eq. 2): 

3

48

FL

EI
       (2) 

Where: 

  = Rib Segment Displacement 

  F = Applied Actuator Force 

L = Span Length  

  E = Young’s Modulus 

  I = Area Moment of Inertia 

 

The maximum displacement equation (Eq. 2) is rearranged in order to determine 

Young’s Modulus (elastic bending modulus) (Eq. 3) as: 

3

48

FL
E

I
     (3) 

 

The effective stiffness of the rib segment, K, is determined by taking the slope of 

the Force-Displacement curve, through (Eq. 4):  

    F
K


     (4) 

In order for the analysis using the above equations to be valid, the following 

assumptions were made: 

 The above equations relative to 3-point bending are valid prior to rib material 

yielding. 

 The rib is straight such that the ratio of the radius of curvature to depth of 
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beam is greater than 5 (Boresi et al. (2003)). 

 The ratio of the span length to cross-section of the rib is greater than 5 to 

minimize effects of shear stresses (Boresi et al. (2003)). 

 The material is homogeneous and isotropic.  

The force data recorded by the load cell from the superior actuator was plotted 

against the displacement of the actuator.  The end of the linear (or elastic) portion of the 

force-deflection curve was defined by identifying where its average slope deviated below 

the mean of all preceding calculated average slopes by more than one standard deviation.  

This process is illustrated in Figure 5.3.3 below for Rib 6 of one of the 6-year-old PSE. 

 

Figure 5.3.3 Average Slope Exceeds the Slopes one STD, Defining the Linear 
Region of the Force-Deflection Curve 

The stiffness, K, was defined as the slope of the defined linear portion of the force-

deflection curve.  Once the linear portion of the force-deflection curve was defined, this 
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data was fit with a linear regression equation.  A power curve was then fitted to the plastic 

region (non-linear portion) of the force-deflection curve from 90% of the maximum force 

level to maximum force.  The yield force of the rib specimen was defined as the force at 

which the linear fit and power fit of the force-deflection curve intersected.  This method 

was adopted from that developed by Pfefferle et al. (2007). This process is illustrated in 

Figure 5.3.4 below for Rib 6 of one of the 6-year-old PSE. 

 

Figure 5.3.4 Rib Testing Linear Region Stiffness and Yield Force Determination 

In addition to their intended use for the current study, the calculated material 

properties of the tested PSE rib segments were compared to past research related to 

swine and human rib segment material properties. 

5.4 – Results 

Force-deflection curves from the swine rib 3-point bending tests performed on the 
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3-year-old, 6-year-old, 10-year-old, and 50th percentile adult human male PSE are 

provided in Figures 5.4.1 through 5.4.4, respectively. All force-deflection curves from the 

swine rib 3-point bending tests performed are provided in Figures 5.4.5, below.  

As shown in Figure 5.4.5, the amount of force the swine rib can sustain increases 

with age. Rib stiffness (slope of the increasing portion of the force-displacement curve) is 

higher from the 3-year-old equivalent age to the 6-year-old equivalent age but was 

comparable between the 6-year-old and 10-year-old equivalent ages.  Rib stiffness 

increased again from the 10-year-old equivalent age to the adult equivalent age 

 

Figure 5.4.1 3-Year-Old Human PSE Rib 3-Point Bending Test Force-Displacement 
Curves 
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Figure 5.4.2 6-Year-Old Human PSE Rib 3-Point Bending Test Force-Displacement 
Curves 

 

Figure 5.4.3 10-Year-Old Human PSE Rib 3-Point Bending Test Force-
Displacement Curves  
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Figure 5.4.4 50th Percentile Human Male PSE Rib 3-Point Bending Test Force-
Displacement Curves 

 

Figure 5.4.5 All PSE Rib 3-Point Bending Test Force-Displacement Curves 

. 
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Table 5.4.1 summarizes the cross-sectional data for each rib specimen while Table 

5.4.2 summarizes the mechanical properties for each rib specimen tested. 

Table 5.4.1 Summary of Tested Swine Rib Specimens Cross-Sectional Properties 

 

Table 5.4.2 Summary of Tested Swine Rib Specimens Mechanical Properties 
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5.5 – Discussion 

Table 5.5.1, below, provides a summary of the average rib material properties from 

the current study as well as from other swine and human rib bending material properties 

research. Those studies highlighted in blue in the table were run at quasi-static load rates 

and the studies in white were run at dynamic load rates.  All dynamic load rate testing 

generated higher Modulus of Elasticity results than the quasi-static testing, with the 

exception of the Granik and Stein (1973) testing, which produced an average Modulus of 

Elasticity of 11.5 GPa from its quasi-static rib 3-point bending test research. 

Table 5.5.1 Comparative Values for Material Properties from Other Relevant Human 
and Swine Rib Bending Research 

 

 Comparable quasi-static load rate testing to the current study includes human 
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pediatric rib material properties research by Agnew et al. (2013) and human adult rib 

material properties research by Yoganandan and Pintar (1998) and Granik and Stein 

(1973).  It should be noted that rib material properties for both human and swine are 

limited for comparison purposes.   Due to the scarcity of pediatric PMHS for research, the 

number of pediatric rib specimens tested in 3-point bending for various age levels is lower 

than what was tested during the current study.  For instance, after adjustment of the rib 

specimens in Agnew et al. (2013) based on developmental age as opposed to biological 

age of the pediatric PMHS, there were only two rib specimens used to determine the 6-

year-old human rib material properties and only four rib specimens generating the 10-

year-old human rib material properties.  Much research has been performed with human 

adult ribs; however, the majority of the research has been performed at dynamic testing 

levels which is not directly comparable to the current study since faster load rates typically 

result in higher forces sustained over shorter distances and time, as demonstrated in 

Sandoz et al. (2007). The only direct comparison of 3-point bending quasi-static load rate 

research performed on human adult ribs known is the work performed by Yoganandan 

and Pintar (1998) and Granik and Stein (1973).  Only two adult rib specimens were tested 

in the Yoganandan and Pintar (1998) study.  Ribs 6 and 7 from ten normal cadavers (20 

rib specimens) were tested in the Granik and Stein (1973) study. Next to the current study 

testing performed, the only porcine rib material properties research found, which was 

performed at somewhat higher load rates, was by Kieser et al. (2013) and Bradley et al. 

(2013).  The material properties comparison values based on the comparable quasi-static 

load rate testing is provided in Table 5.5.2, below.   
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Table 5.5.2 Comparative Values for Material Properties from Comparable Quasi-Static 
Load Rate Human and Swine Rib Bending Research 

 

 Comparison of values between human and pigs for each material property was 

performed for each age group and a percent difference between human rib and porcine 

rib material property values was calculated.  In addition, each material property was 

compared between the human and porcine ribs at each equivalent age level to determine 

if there was any correlation between the two for each material property. Figure 5.5.1 

displays the comparison of human and all swine tested rib specimen peak force versus 

age.  A power curve through the current study porcine rib testing displays a correlation of 

93.81 percent with respect to peak force versus equivalent age. As shown in Figure 5.5.2, 

although there is a slight decrease in peak force seen from the 6-year-old to the 10-year-

old human rib strength, the general trend is that peak force is higher with age for both 

humans and pigs. The 3-year-old human ribs display a 50.8 percent higher peak force 

versus the 3-year-old PSE ribs.  The 6-year-old human ribs display a 17.7 percent higher 

peak force versus the 6-year-old PSE ribs. In contrast, the 10-year-old and adult human 

ribs display a 23.1 percent and 58.6 percent lower peak force, respectively, when 
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compared to the 10-year-old and 50th percentile adult male PSE ribs.  

 

Figure 5.5.6 Peak Force v. Equivalent Age - Human and Swine Ribs

 

Figure 5.5.2 Peak Force v. Age - Human and Swine Ribs (Average of 
Specimens) 
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 An 85.75 percent linear correlation is displayed in Figure 5.5.3 when comparing 

human rib peak force and the current study porcine rib peak force relative to equivalent 

age.  It should be noted that due to the small sample sizes for both human and porcine 

ribs tested, significance level of the correlation was not calculated.  

 

Figure 5.5.3 Peak Force Porcine Ribs versus Peak Force Human Ribs at Equivalent 
Age Levels 

Human and all current study swine tested rib specimens were compared with 

respect to cortical cross-sectional area versus equivalent age and the results are 

displayed in Figure 5.5.4, below.  A power curve through the current study porcine rib 

testing displays a correlation of 79.63 percent with respect to cortical bone cross-sectional 

area versus equivalent age. The current study porcine rib testing displays a higher cortical 

bone cross-sectional area with equivalent age. The human rib cortical bone cross-

sectional area increases relative to equivalent age up to 6 years of age.  Average cortical 
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bone cross-sectional area for the 9-year-old human was very similar to that of the 6-year-

old resulting in a leveling off of the human rib cortical bone cross-sectional area with 

increase in age.   

 

Figure 5.5.4 Rib Cortical Bone Cross-Sectional Area v. Equivalent Age - Human 
and Porcine Ribs 

Figure 5.5.5 again shows the increase in cortical bone cross-sectional area versus 

equivalent age for the current study porcine rib testing and the similar cross-sectional 

area for the human 6-year-old and 10-year-old rib data. The 3-year-old human rib data 

displays a 7.9 percent higher cortical bone cross-sectional area versus the 3-year-old 

PSE rib data.  The 6-year-old and 10-year-old human rib data displays a 29.2 percent 

decrease and a 41.1 percent decrease in cortical cross-sectional area, respectively, 

versus the PSE rib data. No data was available for the adult human rib data for 

comparison to the current study porcine rib data for this material property. 
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Figure 5.5.5 Cortical Bone Cross-Sectional Area v. Age - Human and Porcine Ribs 
(Average of Specimens) 

 A 98.48 percent linear correlation is displayed in Figure 5.5.6 when comparing 

human cortical bone cross-sectional area and the current study porcine rib cortical bone 

cross-sectional area relative to equivalent age.   

The current study porcine rib specimens tested and human rib data were also 

compared with respect to moment of inertia versus equivalent age and the results are 

displayed in Figure 5.5.7, below.  A power curve through the current study porcine rib 

testing displays a correlation of 95.53 percent with respect to porcine rib moment of inertia 

versus equivalent age. The current study porcine rib testing displays higher area moment 

of inertia with an increase in equivalent age. The human rib area moment of inertia 

increases slightly relative to equivalent age up to 6 years of age.  Area moment of inertia 

for the 9-year-old human was very similar to that of the 6-year-old resulting in a leveling 

off of the moment of inertia with increase in age.   



www.manaraa.com

 

159 
 

 

 

Figure 5.5.6 Cortical Bone Cross-Sectional Area of Porcine Ribs versus Cortical 
Bone Cross-Sectional Area of Human Ribs at Equivalent Age Levels 

 

 

Figure 5.5.7 Moment of Inertia v. Equivalent Age - Human and Porcine Ribs 

Figure 5.5.8 shows the higher moment of inertia versus equivalent age for the 



www.manaraa.com

 

160 
 

 

current study porcine rib testing and how the moment of inertia for the human 6-year-old 

and 10-year-old rib data is similar in value. The 3-year-old human rib data shows a 0.6 

percent lower moment of inertia versus the 3-year-old PSE rib data.  The 6-year-old and 

10-year-old human rib data displays a 43.8 % lower and a 98.2 % lower moment of inertia, 

respectively, versus the PSE rib data. No data was available for the adult human rib data 

for comparison to the current study porcine rib data for this material property. 

 

Figure 5.5.8 Area Moment of Inertia v. Age - Human and Porcine Ribs (Average of 
Specimens) 

 A 69.71 percent correlation is displayed in Figure 5.5.9 when comparing human 

area moment of inertia and the current study porcine rib moment of inertia values relative 

to equivalent age.   
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Figure 5.5.9 Area Moment of Inertia of Porcine Ribs versus Area Moment of Inertia of 
Human Ribs at Equivalent Age Levels 

The current study porcine tested rib specimens and human rib specimens were 

also compared with respect to stiffness versus equivalent age and the results are 

displayed in Figure 5.5.10, below.  A power curve through the current study swine rib 

testing displays a correlation of 71.68 percent with respect to rib stiffness relative to 

equivalent age. The current study porcine rib testing shows an increase in rib stiffness 

from the 3-year-old equivalent to the 6-year-old equivalent specimens, a similar stiffness 

level between the 6-year-old and the 10-year-old equivalent specimens and then a higher 

stiffness level for the adult equivalent specimens. The human rib stiffness levels 

demonstrate an irregular pattern with respect to equivalent age with a lower stiffness level 

from ages 0 to 2, and higher stiffness level from ages 2 to 6, and then a lower stiffness 

level from age 6 to age 9. It also shown in Figure 5.5.10 that the human rib stiffness levels 

are higher than the porcine rib stiffness levels from equivalent ages 2 to 6. 
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Figure 5.5.10 Rib Stiffness v. Equivalent Age - Human and Porcine Ribs 

Figure 5.5.11 better illustrates the higher human rib stiffness levels compared to 

the current study porcine rib stiffness levels at equivalent ages 3 and 6 but a lower rib 

stiffness level for the human ribs compared to the porcine ribs at the 10-year-old 

equivalent age.   The 3-year-old human rib data shows a 62.5 percent higher rib stiffness 

versus the 3-year-old PSE rib data.  The 6-year-old human rib data demonstrates a 39.7 

percent higher rib stiffness versus the 6-year-old PSE rib data.  The 10-year-old human 

rib data, however, is 35.6 % lower in rib stiffness compared to the PSE rib data. No data 

was available for the adult human rib data for comparison to the current study porcine rib 

data for this material property. 
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Figure 5.5.11 Rib Stiffness v. Age - Human and Porcine Ribs (Average of 

Specimens) 

There was no correlation found when comparing human rib stiffness and the 

current study porcine rib stiffness relative to equivalent age, as illustrated in Figure 5.5.12, 

below.  This lack of correlation should be considered with caution.  At least fourteen 

equivalent years of data relative to rib material properties for both human and swine have 

not been accounted for in research from equivalent age 10 to adult.  This age range for 

humans encompasses puberty and would be considered a time of substantial skeletal 

changes.  More research is necessary, where this data is lacking, to be able to 

appropriately determine data trends and correlation of rib stiffness and material properties 

from pediatric to adult.    

Finally, the current study porcine tested rib specimens and human rib specimens 

were compared with respect to modulus of elasticity in bending versus equivalent age 
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and the results are displayed in Figure 5.5.13, below.  The current study porcine rib testing 

data displays a slight decrease in modulus of elasticity from the 3-year-old equivalent to 

the 6-year-old equivalent specimens and the modulus of elasticity tends to remain at a 

fairly consistent value from the 6-year-old to the 10-year-old PSE, and is higher from the 

10-year-old to the adult equivalent age specimens.  The higher elastic modulus of the 3-

year-old PSE ribs is most probably due to the fact that the 3-year-old PSE ribs are only 

slightly shorter in length (of the linear rib portion) than the 6-year-old PSE, but the 3-year-

old PSE rib has a smaller cross-section than the 6-year-old PSE rib. The human rib elastic 

modulus is higher than the porcine rib data from ages 3 through 10 and then is at similar 

values to the porcine rib data at the adult equivalent age.  Swine rib modulus of elasticity 

from the Bradley et al. (2013) and Kieser et al. (2013) studies demonstrate higher levels 

than both the current study swine rib and human rib modulus of elasticity in bending. 

 

Figure 5.5.12 Porcine Rib Stiffness versus Human Rib Stiffness at Equivalent 
Age Levels 
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Figure 5.5.13 Modulus of Elasticity in Bending versus Equivalent Age - Human 
and Porcine Ribs 

 

Figure 5.5.14 better illustrates the higher human rib modulus of elasticity values 

compared to the current study swine rib modulus of elasticity values at equivalent ages 3 

through 10 but similar modulus of elasticity values for the human ribs compared to the 

porcine ribs at the adult equivalent age.   The 3-year-old human rib data shows an 83.8 

percent higher rib modulus of elasticity versus the 3-year-old PSE rib data.  The 6-year-

old human rib modulus of elasticity data demonstrates a 113.9 percent higher value than 

the 6-year-old PSE rib data.  The 10-year-old human rib data displays a 141.8 percent 

higher rib modulus of elasticity compared to the PSE rib data. The adult age human rib 

data displays only a 1.54 percent higher rib modulus of elasticity compared to the PSE 
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rib data. 

 

Figure 5.5.14 Modulus of Elasticity in Bending versus Age - Human and Porcine 
Ribs (Average of Specimens) 

 

There was no correlation found when comparing human rib modulus of elasticity 

and the current study swine rib modulus of elasticity relative to equivalent age, as 

illustrated in Figure 5.5.15, below. 

Quasi-static 3-point bending porcine rib testing was performed in the current study 

on six rib specimens for each of four human age equivalent levels for a total of twenty-

four rib specimens tested. Force and displacement data was recorded during testing in 

order to develop force-displacement curves for each of the tested rib specimens.  Swine 

rib specimens at each of the four human age equivalent levels were found to respond 

similarly to the applied load at the set load rate relative to other rib specimens tested in 

their comparable age equivalent groups. Sustained force levels before rib fracture 
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occurred were found to increase with increasing equivalent age.  Rib stiffness was also 

found to increase with equivalent age although stiffness levels were similar for the 6-year-

old and 10-year-old equivalent age levels.   

 

Figure 5.5.15 Swine Rib Modulus of Elasticity in Bending versus Human Rib Modulus of 
Elasticity in Bending at Equivalent Age Levels 

Modulus of elasticity in bending was calculated from the material properties 

obtained from CT cross-sections of the tested porcine ribs and their force-displacement 

data for use in the ATD scaling laws analysis presented in Chapter 6 of this current study.  

It was found that calculated modulus of elasticity for the current study porcine ribs 

decreased somewhat from 2.4 GPa at the 3-year-old equivalent age to 1.5 GPa at the 6-

year-old equivalent age and then increased from the 6-year-old equivalent age to 2.1 GPa 

at the adult equivalent age.  The change in modulus of elasticity observed with equivalent 

age in the current study may be a function of the span length determination technique 

used.  Measured lengths of the 3-year-old and 6-year-old rib specimens were similar, 
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resulting in similar span lengths for these two equivalent age groups.  The moment of 

inertia and effective rib stiffness properties determined for the 3-year-old ribs were found 

to be less than the 6-year-old equivalent age group.  Since the calculation of the modulus 

of elasticity property of the rib is a function of the product of effective stiffness and span 

length cubed over moment of inertia, lower moment of inertia and longer span lengths will 

have an effect on increasing modulus of elasticity, as was the case for the 3-year-old PSE 

ribs in the current study. 

The modulus of elasticity for the 50th male PSE ribs in the current study was found 

to be less than the 6.6 GPa elastic modulus based on human pediatric parietal bone test 

data used by Irwin and Mertz (1997) in establishing the adult to child ATD scaling laws. 

This study is subject to some important additional limitations.  For instance, 

although the results were fairly consistent, only six ribs per equivalent age group were 

tested in 3-point bending.  Additional testing may be necessary to further quantify any 

significant variability relative to the presented data.  

Structural and material-level responses of rib using the 3-point bending testing and 

simple beam theory assumptions have been shown to be appropriate through research 

performed by Cormier et al. (2005); however, this testing is performed at a quasi-static 

load rate. Rib material and structural properties would be expected to be different at 

higher load rates and deformation.  More recent rib property studies have incorporated 

the Charpail et al. (2005) methodology in which the rib specimen extremities were potted 

in caps by polyester cement with a hardener and placed in a test apparatus where one 

cap was fixed to the apparatus with a pin joint and the second cap was allowed to rotate 

along the same axis and to translate along the anterior-posterior axis.  This methodology 
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has only been observed by this author in anterior-posterior rib loading research.  It is 

unclear how this methodology could be used for lateral rib testing, that determination was 

not part of the current study’s focus, and therefore this methodology was not used. This 

may be a focus, however, of future studies in order to establish an improved method of 

determining rib structural and material properties in lateral rib impact testing.  

The swine rib elastic bending moduli determined in the current study are similar in 

values to the adult human rib elastic bending modulus determined by Yoganandan and 

Pintar (1998).  The values in the current study, however, are not consistent with any other 

human or swine rib elastic bending modulus property study performed (see Table 5.5.1 

for reference and comparison).  Other studies, with the exception of Yoganandan and 

Pintar (1998), resulted in higher rib elastic bending modulus values compared to the 

current study, regardless of the variance in test parameters with respect to the different 

studies.  

The lower and fairly constant swine rib elastic modulus values observed in the 

current study, across all equivalent ages, when compared to previous research, was an 

unexpected result.  It would be expected that rib bone would be more flexible at the 

younger equivalent age levels, becoming more calcified with age as bones material 

properties change and ossification occurs. Calculations of rib elastic modulus in the 

current study were based on assumptions of simple beam bending analysis in an attempt 

to correlate the current study data to human pediatric and adult rib materials calculated 

using the same assumptions. This approach has limitations.  For instance, it is assumed 

that the swine and human ribs are straight. The swine rib cage is fairly circular in shape, 

and therefore the swine’s ribs are not straight but are curved.  This can play a role in 
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overall mechanical properties.  Past studies have assumed the rib cross-section is circular 

for ease in cross-sectional material property calculations.  That technique was not used 

in the current study.  The current study used CT scans of the rib specimen’s cross 

sections for more accurate cross-sectional material property calculations. Despite this 

approach, simple beam bending analysis assumes that the cross-section remains 

constant throughout the length of the specimen, which is not the case for the tested ribs. 

Span length determination for rib 3-point bending testing requires simple beam bending 

assumptions in order to use this approach.  Using test coupons from the rib as opposed 

to rib bending testing would prove more repeatable in test results by reducing or 

eliminating some of the assumptions necessary in 3-point bending, and perhaps resulting 

in more expected rib material property results. 

 Kalra et al. (2015) analyzed characteristics of adult human rib biomechanical 

responses due to 3-point bending in quasi-static loading.  Variations in adult human rib 

elastic modulus observed in previous research were analyzed. It was concluded that 

using reverse engineering from thickness of bone contours in medical images to 

determine rib bending moment of inertia for the determination of rib elastic bending 

modulus was more appropriate and eliminated the use of cross sectional areas. Further 

research with respect to porcine surrogate equivalent rib elastic bending modulus using 

this approach or rib coupon testing should be considered in future research to determine 

if any differences in swine elastic bending modulus with human-equivalent-age is 

observed compared to the current study’s results.  

There was a discernable gap in the data analyzed in the current study from age 10 

to adult. As discussed previously, calcification of bones and growth plate closures occur 
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during this age range in humans. More research is necessary to verify the trends in 

material properties relative to age through this age range are consistent with those 

observed in the current study.  

Any animal model has accompanying limitations in terms of its ability to represent 

human response. For instance, the size and shape of porcine ribs are not the same as 

human ribs at any age level, porcine ribs do not angle the same direction as human ribs, 

nor do porcine ribs attach to the rib cage in a similar manner as human ribs.    

To this author, there are presently no known lateral bending rib structural and 

material property analyses over the equivalent ages presented in the current study for 

either humans or PSE. Rib material properties, in lateral bending, for both humans and 

pigs are limited for comparison purposes due to the minimal number of rib specimens 

tested at these age levels and comparable load rates among sample data. General 

comparison was made, however, between the limited human rib material properties data 

to the current study porcine rib material properties. Modulus of elasticity for the current 

study porcine ribs was found to be much lower than the modulus of elasticity calculated 

for the human pediatric ribs from age 3 to age 10 studied by Agnew et al. (2013).  Modulus 

of elasticity for the current study adult equivalent age porcine ribs was found, however, to 

be comparable to the adult human rib modulus of elasticity determined through similar 

quasi-static 3-point bending rib testing performed by Yoganandan and Pintar (1998). One 

possible reason for this difference may be the low number of human rib specimens tested 

at these individual ages, particularly for the 6 to 10-year-old age levels, even though 

adjustment for developmental versus biological age was made for the tested specimens.  

Another possible reason for this difference may be the smaller cortical bone cross-
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sectional area and moment of inertias for the human ribs compared to the porcine ribs.  

5.6 – Conclusions 

The primary contributions of this study were to establish lateral bending structural 

and material rib properties for PSE to the 3-year-old, 6-year-old, 10-year-old and 50th 

male human, and compare the results to known human rib properties.  In addition, 

calculation of the elastic bending modulus of the porcine ribs was calculated in order to 

use these material properties to calculate scaled corridors for swine lateral impact testing, 

compare it to the PSE ages studied, and determine if the scaling laws are appropriate. 

The overall findings of the current study confirm a positive correlation between 

swine peak bending force, rib stiffness, rib cortical cross-sectional area, and moment of 

inertia with age. There was no positive correlation found in the current study between 

swine rib modulus of elasticity and age.   

Further investigation is needed to better understand the lack of positive correlation 

for swine rib modulus of elasticity with age.  In addition, further investigation is needed 

regarding the understanding of how the material and structural properties of ribs change 

with age for both humans and pigs, both quasi-statically and dynamically.  Further 

understanding of rib material and structural properties, as well as thoracic material and 

structural properties as a unit would be useful in the design and establishment of more 

biofidelic ATDs at all age levels.  
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CHAPTER 6 – RESPONSE RATIO DEVELOPMENT FOR LATERAL PENDULUM 
IMPACT PORCINE THORAX AND ABDOMEN SURROGATE EQUIVALENTS 
(SPECIFIC AIM 5) 

6.1 – A Brief Overview of Pediatric PMHS and Animal Surrogate Thorax and 

Abdomen Testing Comparisons 

There has been recent research progress over the past 10 years comparing 6-

year-old thoracic and abdominal response of pediatric volunteers, pediatric PMHS, animal 

surrogates, and 6-year-old ATDs. 

For instance, Kent et al. (2009) performed a series of frontal loading tests on a 7-

year-old PMHS and compared it to the test data obtained for the 6-year-old porcine model 

presented in Kent et al. (2006).  The PMHS data was also used to analyze the efficacy of 

various scaling techniques used for scaling existing adult thoracic response data to the 

child as well as to analyze and confirm the porcine abdominal model.  Results showed 

that the pediatric PMHS lower abdominal response was similar to the porcine model and 

the upper abdomen and thorax being slightly stiffer.  Four different scaling techniques, 

including mass scaling (Eppinger et al., 1984), SAE (Mertz et al., 1989, and Irwin and 

Mertz, 1997), ISO 9790 (Irwin et al., 2002), and Parallel Springs (Kent et al. 2004, and 

Kent, 2008) were used in the scaling analysis.  It was determined that none of the four 

scaling techniques effectively predicted the PMHS response.  All scaling techniques were 

found to reduce the stiffness of the adult response even though the pediatric PMHS 

response was found to be as stiff as or slightly more stiff than published adult response 

corridors.   

Lamp et al. (2010) expanded on the analysis performed by Kent et al. (2009) by 

including an additional abdominal test series from a 6-year-old PMHS in order to further 

evaluate the efficacy of the Kent et al. (2006) porcine model.  It was found that the two 
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pediatric PMHS were similar in abdominal stiffness behavior both by level (upper and 

lower) as well as rate.  

Kent et al. (2011) again expanded on previous research by analyzing a series of 

frontal impact load tests on a 6, 7, and 15-year-old PMHS in order to analyze the efficacy 

of scaling of existing adult thoracic response data for application to the child and evaluate 

the validity of the porcine model.  This study provided useful information to help support 

the concept that thoracic stiffness is not a linear relationship relative to age, and therefore, 

existing scaling techniques do not properly represent this relationship. The pediatric 

response data follow a general trend in which pediatric and elderly PMHS have similar 

thoracic stiffness in dynamic diagonal belt frontal loading whereas late adolescents and 

young adults tend to possess a greater thoracic stiffness behavior. 

Although progress has been made to guide scaling of adult to pediatric thorax and 

abdomen data, further effort is needed, particularly with respect to lateral and oblique 

impacts. 

The objective of this study was to develop scaling and response ratios using the 

ISO 9790 method provided in Irwin et al. (2002) for the 3-year-old, 6-year-old, 10-year-

old, from 50th adult male PSE lateral pendulum impact testing of the thorax and abdomen.  

The swine scaling and response ratios were then used to scale the established 50th adult 

male PSE lateral impact response corridors obtained from test data at this age equivalent 

level to develop scaled impact response corridors for the younger age PSE.  These scaled 

response corridors were then compared to the actual test data obtained from lateral 

pendulum impacting testing of the younger age PSE to determine if current scaling laws 

used in the development of younger ATDs apply for PSE.  
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6.2 – Methods 

Lateral impact response corridors were created from the phase shifted and 

normalized 50th adult male PSE pendulum lateral impact T1, T14, and L6 accelerations, 

pendulum impact force, and rib deflection parameter time histories for the thorax and 

abdomen testing performed in Specific Aim 3 using the technique identified in Rhule et 

al. (2013).  Using this technique, the set of three impact runs for each parameter recorded 

were averaged point by point to obtain a mean response curve.  The mean response 

curve was then bracketed with plus and minus one standard deviation curves in order to 

generate the impact response corridors for each parameter recorded.  To avoid “necking” 

of the standard deviation curves where original curves had points similar in value, a single 

standard deviation value was obtained by averaging point by point standard deviation 

values, and using that single average standard deviation value to bracket the mean curve. 

The ISO 9790 scaling technique using length, mass, and elastic modulus scale 

factor formulas provided in Irwin et al. (2002) were used in conjunction with the swine 

measured scale parameters obtained in Specific Aims 3 and 4 (Chapters 4 and 5) to 

calculate scale factors for the PSE.  Relevant scale factor formulas applicable to this 

research are included in Table 6.2.1 below.  It should be noted that in Irwin et al. (2002), 

elastic bending modulus of bone data and corresponding scale factors were established 

using values of the elastic modulus of skull bone by interpolating from child and adult 

data.  The current study uses the rib elastic bending modulus data established in Chapter 

5 from the PSE.  
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Table 6.2.1 Formulas for Length, Mass, and Elastic Modulus Scale Factors used by 
Irwin et al. (2002) 
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upper torso mass, 
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In addition to calculation of pertinent scale factors, pertinent test scale factors, also 

known as response ratios, for the pendulum impact tests were calculated using the 

formulas utilized in Irwin et al. (2002). Relevant test response ratio formulas applicable to 

this research are included in Table 6.2.2 below. 
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Table 6.2.2 Formulas for Impact Response Ratios used by Irwin et al. (2002) 

 Pendulum Tests 
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   mp = mass of pendulum 

The scaling factors and response ratios determined for the porcine surrogates 

were compared to the already established ISO human pendulum impact response ratios 

provided in Irwin et al. (2002) to determine whether there was a consistent pattern over 

the age levels for the two sets of data.  
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Once the PSE pendulum impact scaling and response ratios were calculated, the 

values were used to scale the 50th adult male PSE lateral impact response corridors for 

each of the recorded parameter time histories to produce the scaled impact response 

corridors for the younger age PSE. Using the 3-year-old PSE as an example, the 50th 

male PSE response corridors were determined for each parameter (T1, T14, L6 

acceleration, pendulum force).  The time history for the 50th male PSE response corridor 

for a given parameter was then scaled based on the determined time response ratio for 

the 3-year-old, and the 50th male response corridor data for a given parameter of interest 

(acceleration, force, or displacement) would be scaled by its corresponding 3-year-old 

PSE calculated response ratio.   

The scaled response corridors were then compared to the actual test data obtained 

during swine pendulum lateral impact testing at each corresponding age level to 

determine if current scaling laws using the porcine parameters mimicked human scaled 

response corridors and whether scaling laws using swine rib elastic bending modulus are 

applicable. 

 In addition, known pediatric human response data will be compared to known 

adult human response data and young swine impact response data to older swine 

response data of the thorax and abdomen in lateral impact to determine if any relationship 

exists.  

6.3 – Results 

 Based on the formulas for length, mass, and elastic modulus scale factors provided 

previously in Table 6.2.1, the calculated scale factors for the PSE and used in the current 

study are provided in Table 6.3.1 below. The parameters in the table highlighted in green 
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were measured or calculated (in terms of Young’s Modulus and Effective Stiffness) from 

the swine specimens used in the pendulum lateral impact testing and used to develop the 

scale factors provided in the bottom portion of the table. 

Table 6.3.1 Swine Length, Mass, and Elastic Modulus Scale Factors  

 

 The equivalent human ISO lateral pendulum impact response corridor scale 

factors, provided in Irwin et al. (2002) are listed in Table 6.3.2 for reference.   

Table 6.3.2 Human Length, Mass, and Elastic Modulus Scale Factors 
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Figure 6.3.7 Human and Swine Material Properties for Each Age Level Used to 
Generate Scale Factors -  Pendulum Mass (upper left); Erect Seated Height (upper 

right); Total Body Mass (second row left); Upper Torso Mass (second row right); 
Young’s Modulus (bottom) 
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Comparison of the swine and human material properties, including pendulum 

mass, erect seating height, total body mass, upper torso mass, and Young’s Modulus 

used to develop the scaling factors are provided in bar chart format in Figure 6.3.1, above, 

for additional reference below. 

Comparison of the swine and human calculated scale factors are also provided in 

bar chart format in Figures 6.3.2 through 6.3.5 for reference. 

  

Figure 6.3.2 Human and Swine Calculated Scale Factors for Each Age Level - λ z Torso 
(left); λ x torso = λ y torso (right) 

  

Figure 6.3.3 Human and Swine Calculated Scale Factors for Each Age Level - λ m Total 
(left); λ x torso = λ m Upper Torso (right) 
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Figure 6.3.4 Human and Swine Calculated Scale Factors for Each Age Level - λ E Bone 
(Young’s Modulus) (left); λ K Torso (Torso Stiffness) (right) 

  

 

Figure 6.3.5 Human and Swine Calculated Scale Factors for Each Age Level - λ p 
(Pendulum Mass Ratio) (upper left); λ ms (Mass Sums Ratio) (upper right); λ me 

(Equivalent Mass Scale Factor) (bottom)  
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The main difference between the PSE scale factors and the human scale factors 

for each age level is the elastic bending modulus of bone scale factors, recalling that 

Young’s Modulus used for the pigs was derived from the porcine ribs in the research 

performed in Chapter 5, whereas the human Young’s modulus data is derived from 

human child and adult skull bone.  The other scale factor difference that stand out is the 

difference in the torso stiffness for the 3-year-old age level. 

The scale factors provided in Table 6.3.1 were used with the equations in Table 

6.2.2 to obtain the impact response ratios for the 3, 6, and 10-year-old PSE relative to the 

50th male PSE, given in Table 6.3.3 below.  The equivalent human ISO (per Irwin et al. 

(2002)) and van Rantingen et al. (1997) lateral pendulum impact response ratios are 

provided in Table 6.3.4 for comparative reference. 

Table 6.3.3 Response Ratios for the Swine- Force, Deflection, Acceleration, Time 
Period Relative to the 50th Male PSE 
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Table 6.3.4 Response Ratios for Humans - Force, Deflection, Acceleration, Time Period 

 

Comparison of the swine and human calculated abdominal impact response ratios 

are provided in bar chart format in Figures 6.3.6 and 6.3.7 for reference. 

  

Figure 6.3.6 Human and Swine Calculated Impact Response Ratios (IRR) at Each Age 
Level – Abdomen Force IRR (left); Abdomen Displacement IRR (right) 
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Figure 6.3.7 Human and Swine Calculated Impact Response Ratios at Each Age Level 
– Abdomen Acceleration IRR (left); Abdomen Time IRR (right) 

Comparison of the swine and human calculated thorax impact response ratios are 

also provided in bar chart format in Figures 6.3.8 and 6.3.9 for reference below. 

  

Figure 6.3.8 Human and Swine Calculated Impact Response Ratios at Each Age Level 
– Thorax Force IRR (left); Thorax Displacement IRR (right) 
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Figure 6.3.9 Human and Swine Calculated Impact Response Ratios at Each Age Level 
– Thorax Acceleration IRR (left); Thorax Time IRR (right) 

The main differences between the PSE response ratios and the human response 

ratios for each age level are the acceleration and time response ratios.  Additionally, 

substantial difference in response ratios from swine to human are seen for all 3-year-old 

parameters. 

The impact response ratios provided in Table 6.3.3 were applied to the 50th male 

PSE response corridors to develop scaled response corridors for the 3, 6, and 10-year-

old PSE, as described previously.  Pendulum impact response data for the PSE tested 

were compared to the corresponding PSE scaled corridors for the 3-year-old, 6-year-old, 

and 10-year-old PSE.   

Abdomen  

Figure 6.3.10 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum abdominal impact force traces versus time to the response corridors 

scaled from the 50th male PSE based on the calculated response ratios, respectively.   
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Figure 6.3.10 PSE Pendulum Lateral Abdominal Impact Force v. Time Actual Test Data 
Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old (upper left); 

6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.10 for abdominal force versus time show a trend of 

being higher in magnitude and shorter in duration at the 3-year-old level, higher in 

magnitude but similar in time duration at the 6-year-old level, and higher in magnitude 

and somewhat longer in duration at the 10-year-old level when compared to the actual 

test data. 

Figure 6.3.11 establishes the comparison of the 3, 6, 10-year-old, and 50th male 

PSE tested pendulum abdominal impact T1 resultant acceleration traces versus time to 

the response corridors scaled from the 50th male PSE, respectively.   
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Figure 6.3.11 PSE Pendulum Abdominal Lateral Impact T1 Acceleration v. Time Actual 
Test Data Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old 
(upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.11 for T1 acceleration versus time from the 

abdominal impact testing show a trend of being somewhat higher in magnitude and 

shorter in duration at the 3-year-old level, and similar in magnitude and time duration at 

the 6 and 10-year-old levels compared to the actual test data. 

Figure 6.3.12 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum abdominal impact T14 resultant acceleration traces versus time to the 

response corridors scaled from the 50th male PSE, respectively.   
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Figure 6.3.12 PSE Pendulum Abdominal Lateral Impact T14 Acceleration v. Time Actual 
Test Data Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old 
(upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.12 for T14 acceleration versus time from the 

abdominal impact testing display a trend of being somewhat higher in magnitude and 

shorter in duration at the 3-year-old level, similar in magnitude and time duration at the 6 

and 10-year-old levels compared to the actual test data. 

Figure 6.3.13 shows the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum abdominal impact L6 resultant acceleration traces versus time to the 

response corridors scaled from the 50th male PSE, respectively.   
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Figure 6.3.13 PSE Pendulum Abdominal Lateral Impact L6 Acceleration v. Time Actual 
Test Data Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old 
(upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.13 for L6 acceleration versus time from the 

abdominal impact testing exhibits a trend of being somewhat higher in magnitude and  

shorter in duration at the 3-year-old level, and similar in magnitude and time duration at 

the 6 and10-year-old levels compared to the actual test data. 

Thorax  

Figure 6.3.14 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact force traces versus time to the response corridors scaled 

from the 50th male PSE, respectively.   
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Figure 6.3.14 PSE Pendulum Lateral Thoracic Impact Force v. Time Actual Test Data 
Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old (upper left); 

6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.14 for thoracic force versus time show a trend of 

being higher in magnitude and shorter in duration for the 3-year-old and similar in 

magnitude and time duration at the 6 and 10-year-old levels when compared to the actual 

test data. 

Figure 6.3.15 shows the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact T1 lateral acceleration traces versus time to the response 

corridors scaled from the 50th male PSE, respectively.   
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Figure 6.3.15 PSE Pendulum Thoracic Lateral Impact T1 Acceleration v. Time Actual 
Test Data Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old 
(upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.15 for T1 acceleration versus time from the thorax 

impact testing show a trend of being higher in magnitude and shorter in duration at the 3-

year-old level, somewhat lower in magnitude and similar in time duration at the 6-year-

old level, and similar in magnitude and time duration at the 10-year-old level compared to 

the actual test data. 

Figure 6.3.16 provides the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact T14 lateral acceleration traces versus time to the 

response corridors scaled from the 50th male PSE, respectively.   
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Figure 6.3.16 PSE Pendulum Thoracic Lateral Impact T14 Acceleration v. Time Actual 
Test Data Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old 
(upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.16 for T14 acceleration versus time from the thorax 

impact testing display a trend of being higher in magnitude and shorter in duration at the 

3-year-old level and similar in magnitude and time duration at the 6 and 10-year-old levels 

compared to the actual test data. 

Figure 6.3.17 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact L6 lateral acceleration traces versus time to the response 

corridors scaled from the 50th male PSE, respectively.   
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Figure 6.3.17 PSE Pendulum Thoracic Lateral Impact L6 Acceleration v. Time Actual 
Test Data Comparison to Scaled Response Corridors from 50th Male PSE (3-year-old 
(upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

Scaled corridors in Figure 6.3.17 for L6 acceleration versus time from the thorax 

impact testing display a trend of being higher in magnitude and shorter in duration at the 

3-year-old level and similar in magnitude and time duration at the 6 and 10-year-old levels 

compared to the actual test data  

Figure 6.3.18 shows the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact full chest impact force traces versus chest displacement. 

Thorax impact force versus full chest displacement displays an increase in force with age 

and an increase in chest displacement up to the 10-year-old age level.  The current data 
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shows a similar chest displacement at the 10-year-old level as the 50th male PSE age.   

 

 

Figure 6.3.18 PSE Pendulum Thoracic Lateral Impact Force v. Full Chest Displacement 
Data Comparison (3-year-old (upper left); 6-year-old (upper right); 10-year-old (lower 

left); 50th male (lower right)) 

Figure 6.3.19 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact full chest displacement versus time. These graphs more 

readily show the increase in chest displacement with age up to the 10-year-old age level 

and a similar chest displacement at the 10-year-old level as the 50th male PSE age.  Peak 

chest displacement occurs at approximately 15 msec for all age levels. 
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Figure 6.3.19 PSE Pendulum Thoracic Lateral Impact Full Chest Displacement v. Time 
Data Comparison (3-year-old (upper left); 6-year-old (upper right); 10-year-old (lower 

left); 50th male (lower right)) 

6.4 – Discussion 

The general trend observed when comparing scaling response corridors from the 

50th male PSE to the younger ages for all parameters tested was that all 3-year-old PSE 

impact response corridors did not match, and were found to be greater in magnitude and 

shorter in time duration than the actual data. The main factors that make up the response 

ratio calculations (provided in Table 6.2.2) are the mass equivalent and torso stiffness 

scale factors. The torso stiffness calculation, in turn, is determined using the scale factor 

for elastic bending modulus of bone and the length scale factor which is based on the 
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erect seated height of the various aged pigs. The main difference between the PSE scale 

factors and the human scale factors for each age level is the Young’s Modulus of bone 

scale factors. The elastic bending modulus of bone scale factor for the 10-year-old human 

was determined to be 0.854, but was calculated to be 0.784 for the 10-year-old PSE. The 

elastic bending modulus of bone scale factor for the 6-year-old human age level was 

determined to be 0.667, and calculated to be 0.728 for the 6-year-old PSE. The elastic 

bending modulus of bone scale factor for the 3-year-old human age level was 

documented to be 0.475, but was calculated to be 1.108 for the 3-year-old PSE.   

The human scale factors for elastic bending modulus of bone, derived from 

extrapolation of child and adult skull bone, and provided in Irwin et al. (2002) increase 

with age.  The elastic bending modulus of bone scale factors used in the current study for 

the PSE were derived from the swine rib bending testing of the individual ribs harvested 

from the non-impacted side of the test specimens at each equivalent age level.  As 

documented in Chapter 5, Young’s Modulus values for the porcine ribs were found to 

decrease from the 50th male PSE to the 10-year-old age level, decrease slightly more 

from the 10-year-old to the 6-year-old PSE age levels, and then increase from the 6-year-

old to the 3-year-old PSE age levels. This pattern observed with the elastic bending 

modulus values for swine ribs carried over to the calculated elastic bending modulus scale 

factors which in turn were used in determining the torso stiffness scale factors for the 

pigs.  

The torso stiffness scale factor is used in the denominator of the time response 

ratio calculation and in the numerator for the force and acceleration response ratio 

calculations (see Table 6.2.2 for reference).  Therefore, the larger torso stiffness scale 
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factor value calculated for the 3-year-old PSE, as a function of its higher rib elastic 

bending modulus value, results in impact response corridors that have a shorter time 

duration and a greater magnitude than those observed for the 6-year-old and 10-year-old 

PSE age levels.  This is not the pattern the actual data possesses, however.   

The actual lateral impact pendulum data, for both thoracic and abdominal regions, 

increases in magnitude and time duration from the 3-year-old PSE up to the 50th male 

PSE.  This increasing magnitude and time duration is comparable to the human response 

corridors developed based on an impulse-momentum analysis and the elastic bending 

modulus derived from skull bone. This pattern was observed in the comparison of the 

porcine data to the human impact response corridors in Chapter 4 as well as from the 

response ratio values presented in Table 6.3.4 above.   

In an attempt to appreciate the effect the elastic modulus has on the formation of 

the impact response corridors, the human elastic modulus values established in Irwin et 

al. (2002) were used to develop the swine scaling corridors instead of the swine rib elastic 

bending moduli.  Data and scale factors used to develop the updated swine impact 

response ratios, are provided in Table 6.4.1, below. Calculated swine impact response 

ratio updated values are provided in Table 6.4.2. 
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Table 6.4.1 Swine Length, Mass, and Updated Elastic Modulus Scale Factors  

 

Table 6.4.2 Updated Response Ratios for the Swine- Force, Deflection, Acceleration, 
Time Period Relative to the 50th Male PSE 

 

Figure 6.4.1 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum abdominal impact force versus time traces to the updated response 

corridors based on the human skull bone elastic modulus and scaled from the 50th male 

PSE.   



www.manaraa.com

 

200 
 

 

 

  

Figure 6.4.1 PSE Pendulum Lateral Abdominal Impact Force v. Time - Actual 
Test Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-
year-old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower 

right)) 
 

The updated scaled corridors in Figure 6.4.1 for abdominal force versus time 

based on using the elastic modulus from Irwin et al. (2002) shows a compatible pulse 

duration and an improved match in magnitude for all age levels when compared to the 

actual porcine test data. This is an enhancement over the scaled corridors for pendulum 

impact force versus time based on swine rib elastic modulus provided earlier in Figure 

6.3.1. 
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Figure 6.4.2 establishes the comparison of the 3, 6, 10-year-old, and 50th male 

PSE tested pendulum abdominal impact T1 resultant acceleration traces versus time to 

the updated response corridors scaled from the 50th male PSE, respectively.   

  

 

Figure 6.4.2 PSE Pendulum Abdominal Lateral Impact T1 Acceleration v. Time - Actual 
Test Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-
year-old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower 

right)) 
 

Updated scaled corridors in Figure 6.4.2 for T1 acceleration versus time from the 

abdominal impact testing shows a compatibility both in magnitude and pulse duration at 

all age levels compared to the actual test data. This is an improvement over the scaled 

corridors for T1 acceleration versus time based on swine rib elastic modulus provided 

earlier in Figure 6.3.2. 
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Figure 6.4.3 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum abdominal impact T14 resultant acceleration traces versus time to the 

updated response corridors scaled from the 50th male PSE, respectively.   

  

  

Figure 6.4.3 PSE Pendulum Abdominal Lateral Impact T14 Acceleration v. Time Actual 
Test Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-
year-old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower 

right)) 
 

Updated scaled corridors in Figure 6.4.3 for T14 acceleration versus time from the 

abdominal impact testing shows a compatibility both in magnitude and pulse duration at 

all age levels compared to the actual test data. This is a vast improvement over the scaled 

corridors for T14 acceleration versus time based on swine rib elastic modulus provided 
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earlier in Figure 6.3.3.  

Figure 6.4.4 shows the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum abdominal impact L6 resultant acceleration traces versus time to the 

updated response corridors scaled from the 50th male PSE, respectively.   

  

 

Figure 6.4.4 PSE Pendulum Abdominal Lateral Impact L6 Acceleration v. Time Actual 
Test Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-
year-old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower 

right)) 
 

Updated scaled corridors in Figure 6.4.4 for L6 acceleration versus time from the 

abdominal impact testing shows a compatibility in both magnitude and pulse duration for 

the 3-year-old, higher magnitude and shorter time duration for the 6-year-old, and 
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compatible magnitude and time duration for the 10-year-old compared to the actual test 

data. This is an improvement over the scaled corridors for L6 acceleration versus time 

based on swine rib elastic modulus provided earlier in Figure 6.3.4.  

Thorax  

Figure 6.4.5 illustrates the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact force traces versus time to the updated response corridors 

scaled from the 50th male PSE, respectively.   

 

 

Figure 6.4.5 PSE Pendulum Lateral Thoracic Impact Force v. Time Actual Test 
Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-year-
old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower right)) 

 

Updated scaled corridors in Figure 6.4.5 for thoracic pendulum impact force versus 



www.manaraa.com

 

205 
 

 

time shows a compatibility in both magnitude and pulse at all age levels compared to the 

actual test data. This is a vast improvement over the force versus time scaled corridors 

based on swine rib elastic modulus (Figure 6.3.5).  

Figure 6.4.6 shows the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact T1 lateral acceleration traces versus time to the updated 

response corridors scaled from the 50th male PSE, respectively.   

 

 

Figure 6.4.6 PSE Pendulum Thoracic Lateral Impact T1 Acceleration v. Time Actual 
Test Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-
year-old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower 

right)) 
 

Updated scaled corridors in Figure 6.4.6 for thoracic T1 acceleration versus time 
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shows a compatibility in both magnitude and pulse at all age levels except at the 6-year-

old age level where the magnitude is lower compared to the actual test data. This is an 

improvement over the T1 acceleration versus time scaled corridors based on swine rib 

elastic modulus (Figure 6.3.6).  

Figure 6.4.7 provides the comparison of the 3, 6, 10-year-old, and 50th male PSE 

tested pendulum thorax impact T14 lateral acceleration traces versus time to the updated 

response corridors scaled from the 50th male PSE, respectively.   

 

  

Figure 6.4.7 PSE Pendulum Thoracic Lateral Impact T14 Acceleration v. Time Actual 
Test Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-
year-old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower 

right)) 
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Updated scaled corridors in Figure 6.4.7 for thoracic T14 acceleration versus time 

demonstrates compatibility in both magnitude and pulse duration at the 3-year-old age 

level, no significant change at the 6-year-old age level, and a compatibility in the pulse 

duration at the 10-year-old age compared to the actual test data. This is an improvement 

over the T14 acceleration versus time scaled corridors based on swine rib elastic modulus 

(Figure 6.3.7).  

 

 

Figure 6.4.8 PSE Pendulum Thoracic Lateral Impact L6 Acceleration v. Time Actual 
Test Data Comparison to Updated Scaled Response Corridors from 50th Male PSE (3-
year-old (upper left); 6-year-old (upper right); 10-year-old (lower left); 50th male (lower 

right)) 



www.manaraa.com

 

208 
 

 

Figure 6.4.8, above, illustrates the comparison of the 3, 6, 10-year-old, and 50th 

male PSE tested pendulum thorax impact L6 lateral acceleration traces versus time to 

the updated response corridors scaled from the 50th male PSE, respectively.   

Updated scaled corridors in Figure 6.4.8 for thoracic L6 acceleration versus time 

shows compatibility in both magnitude and pulse for all age levels compared to the actual 

test data. This is again an improvement over the L6 acceleration versus time scaled 

corridors based on swine rib elastic modulus (Figure 6.3.8).  

Based the current study’s findings, when utilizing the elastic modulus of human 

skull bone presented in Irwin et al. (2002), thoracic and abdominal lateral pendulum 

impact response of PSE follows the general scaling laws, based on the impulse-

momentum spring-mass model developed by Mertz (1984).  The thoracic and abdominal 

lateral pendulum impact response of PSE also follows the ISO human scaled impact 

response corridors for lateral pendulum impact testing presented in Irwin et al. (2002). 

Full chest force versus displacement and full chest displacement versus time were 

also documented during the thoracic pendulum lateral impact tests and were presented 

previously in Figures 6.3.9 and 6.3.10, respectively.  The force-deflection response 

defines the compliance of the rib cage in lateral impact and the area under the curve 

designates the amount of energy absorbed through body deformation. Comparison of the 

current study 50th male PSE full chest force versus deflection data to the human and 

swine impact results presented for the 4.3 m/s testing performed by Viano et al. (1989B; 

1989C), indicates the current study porcine thorax is less compliant that either the human 

or swine specimens studied by Viano et al. in 1989 (Figure 6.4.9).  That is to say, the 

current study 50th male PSE achieved a higher impact force over a shorter rib cage 
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deformation which is representative of a stiffer rib cage.  The difference in rib cage 

stiffness of the current study and that performed by Viano et al. (1989B; 1989C) is 

potentially due to the method used to determine deflection.  The current study utilized a 

superior view high speed camera, a carbon-fiber rod secured to the impacted rib which 

passed laterally through the thoracic region to the non-impacted side of the pig, and 

tracking markers (one located on the end of the carbon fiber rod secured to the impacted 

side of the thorax and one located on the end of a rod secured to the non-impacted side).  

Viano et al. (1989B; 1989C) also used high speed video analysis to determine 

displacement, but it is unclear whether any sort of tracking markers were used.  

  

Figure 6.4.9 Comparison of Current Study 50th Male PSE Full Chest Force versus 
Deflection to Human (left) and Swine (right) Lateral Impact Testing in Viano et al. 

(1989B; 1989C) at a 4.3 m/s Pendulum Impact Speed  

Kent et al. (2009), through their research of pediatric thoracoabdominal 

biomechanics in anterior-posterior belt loading and CPR analyses of children and adults 

suggested that a non-linear relationship may exist between age and thoracic stiffness, 

with peak thoracic stiffness occurring during the young adult phase of life and decreased 

thoracic stiffness for young children and the elderly.  This study further suggested that 

current scaling methods may not adequately capture this behavior. Based on thoracic 
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lateral impact force-displacement results for the PSE evaluated in the current study, there 

appears to be an increase in thoracic stiffness with age up to the 50th male adult 

equivalent.  In addition, the current study, at least from a human-equivalent-age from 3 to 

adult, follows the scaling laws currently established. Unlike the Kent et al. (2009) study, 

the current study does not take into consideration thoracic stiffness of PSE at an elderly 

human adult age level.  Further investigation and study of PSE representing elderly 

humans would be needed to evaluate this hypothesis. 

This study is subject to limitations.  For instance, the current testing only evaluated 

whether current ISO lateral pendulum impact scaling laws are applicable for child ATD 

biofidelic design of the thorax and abdominal regions. The current study confirms that 

scaling laws are applicable for the human adult to the 3-year-old child and appropriate 

weight and breed pigs are appropriate surrogate models for biofidelic evaluation in this 

age range.  The current study, however, does not evaluate whether scaling laws are 

applicable for any other test method such as dynamic sled testing or drop tests.  The 

current study does not evaluate any other body region beyond the thorax and abdomen. 

In addition, the current study does not evaluate whether scaling laws are appropriate for 

human children under age 3 or the elderly.   

Any animal model has accompanying limitations in terms of its ability to represent 

human response. For instance, not every domestic swine grows at the same rate or has 

the same structural makeup as the swine used in the current study.  The current study 

used only Hampshire/Yorkshire Cross domestic pigs throughout testing and analysis.  

Further investigation should be made to determine how results may be effected by other 

swine breeds.    
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The impulse-momentum normalization model Mertz (1984) developed, which was 

analyzed in this study, uses mass and stiffness ratios along with assumptions of lumped 

mass and spring models. Young’s Modulus was used in the calculation of the stiffness 

scaling factor. The stiffness scaling factor, based on this model is used to calculate the 

force, acceleration, displacement, and time impact response ratios.  The stiffness ratio is 

directly proportional to force and acceleration in the impact response ratio calculations, 

but inversely proportional in the time and displacement impact response ratio calculations 

(see Tables 6.2.1 and 6.2.2 for reference). The force and acceleration magnitudes as well 

as impact pulse durations increased with age in the actual measured response data for 

the swine in the current study.  In order for the impact response corridor scaling model to 

work, the corridors need to also increase in force, acceleration, and time duration with 

age at a similar rate. This is accomplished by the stiffness scale parameter, and therefore, 

Young’s Modulus, increasing at a similar rate with age. The porcine rib elastic bending 

modulus calculated in the current study remained fairly similar with increase in age 

resulting in large bone modulus and stiffness scaling factors for the lower age groups, 

particularly the 3-year-old PSE.  Due to the inverse proportionality the stiffness scaling 

factor has on the time response ratio, this produced shorter time duration corridors than 

the actual data.  Similarly, the direct proportionality the stiffness scale factor has with force 

and acceleration response ratio calculations yielded corridors higher in magnitude than 

actual data for the 3-year-old PSE. The human parietal bone elastic bending modulus 

used by Irwin and Mertz (1997) was of proper magnitude for the adult and decreased 

appropriately in magnitude with decrease in age. This trend is similar to the PSE actual 

data, therefore resulting in a better correlation match to the PSE data than using the 
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determined swine rib elastic bending modulus for the torso stiffness scale factor More 

research into the determination of human-equivalent-age swine rib material properties 

using reverse engineering methods, further direct testing using accurate cross-sectional 

measurements, as well as dynamic material properties of the swine and human thorax in 

lateral impact could provide more appropriate torso scaling parameter data. 

6.5 – Conclusions 

The primary contributions of this study were to determine if existing human ISO 

lateral pendulum impact scaling laws for the thorax and abdomen are applicable from the 

mid-male adult down to the 3-year-old human. In addition, contributions of this study were 

also to determine if weight appropriate porcine surrogates could be used as models for 

humans at various age equivalent levels to assist in the advancing child safety in lateral 

impacts. 

The overall findings of the current study confirm, through actual swine testing of 

appropriate weight surrogates that scale laws are applicable from the mid-male adult 

down to the 3-year-old age level.  There is presently no known study that attempts to 

validate the existing scaling laws at various age levels to this author. Scarcity of human 

child PMHS limits such an analysis. In addition, existing scaling laws can be applied to 

porcine surrogates, using human skull elastic modulus values established and provided 

in Irwin et al. (2002), to provide a viable and powerful impact test model alternative for 

child safety research in lateral impacts. 
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CHAPTER 7 – CONCLUSIONS 

 Based on the research testing presented, the following observations were made: 

 The majority of side and oblique impacts occurred in either the 2 o’clock or 10 

o’clock PDOF directions. The majority of child occupants, age 4 through 10, 

involved in side and oblique impacts were reported as being restrained to some 

extent; however, only a small percentage of those reported as restrained were 

identified as using a child seat. 

 The vast majority of injuries identified in the current study using the NASS-CDS 

database (49.2%) occurred at the head and face regions of child occupants 

involved in side and oblique impacts. Upper and lower extremities were also 

identified as being regions of the body frequently injured (11.2% and 13.3% of the 

total injuries, respectively).  Thorax (6.7%) and abdomen (8.8%) body regions were 

also recognized as significant injury locations in side and oblique vehicle impacts 

for the child occupants. 

 When considering only injured thorax and abdomen body regions, the primary 

sources of injury were documented as the vehicle interior or the belt 

restraint/buckle. 

 In order to continue to advance child safety technologies and protect child 

occupants in lateral vehicle impacts, more innovative and biofidelic child 

anthropometric test devices (ATDs) need to be designed. 

 In lateral impact, none of the three 6-year-old ATDs (HIII, Q6, and Q6s) would be 

considered good tools for assessing side impact occupant protection.   
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 Lateral impact force response of the thorax and abdomen of appropriate weight 

porcine surrogates established for human-equivalent-age 3-year-old, 6-year-old, 

10-year-old, and 50th adult male are consistent with the ISO human scaled lateral 

impact response corridors presented in Irwin et al. (2002) and van Rantingen et al 

(1997).   

 There is a significant linear correlation with respect to peak impact pendulum force 

and age for porcine thoracic and abdominal test data compared to the ISO human 

scaled impact response corridors.  As for the thoracic T1 acceleration, no 

significant correlation was found for swine compared to human response corridors. 

 Further investigation is needed to better understand and interpret the higher 

magnitude accelerations experienced at T1 for all age PSE compared to scaled 

human impact response corridors in order to be able to incorporate this data into 

research capabilities. It appears that T1 acceleration data during thorax impact 

testing is roughly two times greater in magnitude and slightly less in pulse duration 

than corresponding human scaled corridors at all tested age levels. This is most 

likely due to the difference in shape of the pig and human thorax, with the pig rib 

cages tending to be thinner in breadth and longer in depth than the human rib cage 

(Sack, 1982).    

 A positive correlation exists between porcine peak bending force, rib stiffness, rib 

cortical cross-sectional area, and moment of inertia with age. There was no 

positive correlation between human and porcine rib elastic modulus and age.   

 Swine testing of appropriate weight surrogates confirm that scaling laws are 

applicable from the mid-male adult down to the 3-year-old age level.   
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 Existing scaling laws can be applied to appropriate weight and breed porcine 

surrogates, using human skull elastic modulus values established and provided in 

Irwin et al. (2002), to provide a viable and powerful impact test model alternative 

for child safety research in lateral impacts. 
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APPENDIX:  ATD Biofidelity Response Graphs and Tables 

 

Figure A1: ISO 9790 – Lateral Pendulum Shoulder Impact – Deflection v Time (4.5 m/s) 

 

Figure A2: ISO 9790 – Lateral Pendulum Thorax Impact - Force v Time (4.3 m/s) 
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Figure A3: ISO 9790 – Lateral Pendulum Thorax Impact - Upper Spine T1 Acceleration v Time (4.3 m/s) 

 

 

Figure A4: ISO 9790 – 1.0 Meter Drop Test – Thorax Plate Impact Force v Time 
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Figure A5: ISO 9790 – 1.0 Meter Drop Test – Peak Deflection of Impacted Rib v Time 

 

 

Figure A6: ISO 9790 – WSU Rigid Sled Test – Thorax/Shoulder Plate Impact Force v Time (6.8 m/s) 
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Figure A7: ISO 9790 – WSU Rigid Sled Test – Peak Upper Spine T1 Lateral Acceleration v Time (6.8 m/s) 

 

 

Figure A8: ISO 9790 – WSU Rigid Sled Test – Peak Lower Spine T12 Lateral Acceleration v Time  

(6.8 m/s) 
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Figure A9: ISO 9790 – WSU Rigid Sled Test – Peak Lateral Acceleration of Impacted Rib v Time (6.8 m/s) 

 

 

Figure A10: ISO 9790 – 1.0 Meter Drop Test – Armrest/Abdomen Impact Force v Time 
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Figure A11: ISO 9790 – 1.0 Meter Drop Test – Peak Lower Spine T12 Acceleration v Time 

 

 

Figure A12: ISO 9790 – 1.0 Meter Drop Test – Peak Acceleration of Impacted Rib v Time 
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Figure A13: ISO 9790 – WSU Rigid Sled Test – Abdomen Plate Impact Force v Time (6.8 m/s) 

 

 

Figure A14: ISO 9790 – Lateral Pendulum Pelvis Impact Force v Time (6/0 m/s) 
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Figure A15: ISO 9790 – WSU Rigid Sled Test – Pelvis Plate Impact Force v Time (6.8 m/s) 

 

 

 

Figure A16: BRS – Lateral Pendulum Thorax Impact Force v Time (4.3 m/s) 
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Figure A17: BRS – 1.0 Meter Drop Test – Thorax Plate Impact Force v Time 

 

 

 

Figure A18: BRS – WSU Rigid Sled Test – Thorax/Shoulder Plate Impact Force v Time (6.8 m/s) 
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Figure A19: BRS – Lateral Pendulum Shoulder Impact Force v Time (4.3 m/s) 

 

 

 

Figure A20: BRS – 1.0 Meter Drop Test – Armrest/Abdomen Impact Force v Time 
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Figure A21: BRS – WSU Rigid Sled Test – Abdomen Plate Impact Force v Time (6.8 m/s) 

 

 

 

Figure A22: BRS – WSU Rigid Sled Test – Pelvis Plate Impact Force v Time (6.8 m/s) 
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Figure A23: van Rantingen Response Corridors – Lateral Pendulum Oblique Abdomen Impact Force v 

Time (4.8 m/s) 

Table A1: ISO 9790 Biofidelity Rating – HIII ATD 
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Table A2: ISO 9790 Biofidelity Rating – Q6 ATD 

 

 

Table A3: ISO 9790 Biofidelity Rating – Q6s ATD 
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Table A4: BRS Biofidelity Ranking – HIII ATD 

 

 

Table A5: BRS Biofidelity Ranking – Q6 ATD 

 

 

Table A6: BRS Biofidelity Ranking – Q6s ATD 
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There is a clear need to further develop the design and biofidelity of the 6-Year-

Old ATDs for future child safety research and child occupant protection in side 

impacts.  Due to the scarcity of pediatric PMHS impact testing, specifically in the 

lateral direction, alternative means of obtaining relevant data for pediatric models 

need to be considered.   

In this first portion of this study, assessment of the mechanical behavior and 

biofidelity of existing 6-Year-Old ATDs in lateral impact were performed. None of the 

three 6-year-old ATDs (HIII, Q6, and Q6s) tested were found to be considered good 

tools for assessing side impact occupant protection.   

In the second portion of this study, evaluation of material properties and thorax 

and abdominal region biofidelity response in lateral impact for porcine subjects that 

were matched for age and torso size to the human 3-Year-Old, 6-Year-Old, 10-Year-

Old, and 50th Percentile Adult male was performed.  Lateral impact force response of 

the porcine surrogate equivalents thorax and abdomen regions were found to be 

consistent with the ISO human scaled lateral impact response corridors presented in 
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Irwin et al. (2002) and van Rantingen et al (1997). 

In the third portion of this study, test response ratios for force, deflection, 

acceleration, and time for the 3-year-old, 6-year-old, 10-year-old, and 50th adult male 

porcine surrogate equivalents from the thorax and abdomen lateral pendulum impacts 

were obtained, and 50th adult male swine impact response corridors were scaled to the 

10-year-old, 6-year-old, and 3-year-old swine to assess current scaling laws. It was 

determined that scaling laws can be applied to appropriate weight and breed porcine 

surrogates, using human skull elastic modulus values established and provided in Irwin 

et al. (2002), to provide a viable and powerful impact test model alternative for child 

safety research in lateral impacts. 
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